Methanogens : Syntrophic Metabolism

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2018
Autor:innen
Sieber, Jessica R.
McInerney, Michael J.
Gunsalus, Rob P.
Plugge, Caroline M.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published
Erschienen in
STAMS, Alfons J.M., ed., Diana SOUSA, ed.. Biogenesis of Hydrocarbons. Cham: Springer, 2018, pp. 1-31. ISBN 978-3-319-53114-4. Available under: doi: 10.1007/978-3-319-53114-4_2-1
Zusammenfassung

Syntrophy is a mutualistic interaction in which two metabolically different types of microorganisms are linked by the need to keep metabolites exchanged between the two partners at low concentrations to make the overall metabolism of both organisms feasible. In most cases, the cooperation is based on the transfer of hydrogen, formate, or acetate from fermentative bacteria to methanogens to make the degradation of electron-rich substrates thermodynamically favorable. Syntrophic metabolism proceeds at very low Gibbs’ free energy changes, close to the minimum free energy change needed to conserve energy biologically, which is the energy needed to transport one proton across the cytoplasmic membrane. Pathways for syntrophic degradation of fatty acids predict the net synthesis of about one-third of an ATP per round of catabolism. Syntrophic metabolism entails critical oxidation-reduction reactions in which H2 or formate production would be thermodynamically unfavorable unless energy is invested. Molecular insights into the membrane processes involved in ion translocation and reverse electron transport revealed that syntrophs harbor multiple systems for reverse electron transfer. While much evidence supports the interspecies transfer of H2 and formate, other mechanisms of interspecies electron transfer exist including cysteine cycling and possibly direct interspecies electron transfer as electric current via conductive pili or (semi)conductive minerals.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SIEBER, Jessica R., Michael J. MCINERNEY, Nicolai MÜLLER, Bernhard SCHINK, Rob P. GUNSALUS, Caroline M. PLUGGE, 2018. Methanogens : Syntrophic Metabolism. In: STAMS, Alfons J.M., ed., Diana SOUSA, ed.. Biogenesis of Hydrocarbons. Cham: Springer, 2018, pp. 1-31. ISBN 978-3-319-53114-4. Available under: doi: 10.1007/978-3-319-53114-4_2-1
BibTex
@incollection{Sieber2018-03-14Metha-46417,
  year={2018},
  doi={10.1007/978-3-319-53114-4_2-1},
  title={Methanogens : Syntrophic Metabolism},
  isbn={978-3-319-53114-4},
  publisher={Springer},
  address={Cham},
  booktitle={Biogenesis of Hydrocarbons},
  pages={1--31},
  editor={Stams, Alfons J.M. and Sousa, Diana},
  author={Sieber, Jessica R. and McInerney, Michael J. and Müller, Nicolai and Schink, Bernhard and Gunsalus, Rob P. and Plugge, Caroline M.},
  note={Springer Nature Living Reference. Biomedical and Life Sciences}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46417">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Gunsalus, Rob P.</dc:creator>
    <dc:contributor>Schink, Bernhard</dc:contributor>
    <dc:contributor>Gunsalus, Rob P.</dc:contributor>
    <dc:creator>McInerney, Michael J.</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46417"/>
    <dc:creator>Schink, Bernhard</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-16T15:03:43Z</dcterms:available>
    <dc:contributor>McInerney, Michael J.</dc:contributor>
    <dc:creator>Plugge, Caroline M.</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:abstract xml:lang="eng">Syntrophy is a mutualistic interaction in which two metabolically different types of microorganisms are linked by the need to keep metabolites exchanged between the two partners at low concentrations to make the overall metabolism of both organisms feasible. In most cases, the cooperation is based on the transfer of hydrogen, formate, or acetate from fermentative bacteria to methanogens to make the degradation of electron-rich substrates thermodynamically favorable. Syntrophic metabolism proceeds at very low Gibbs’ free energy changes, close to the minimum free energy change needed to conserve energy biologically, which is the energy needed to transport one proton across the cytoplasmic membrane. Pathways for syntrophic degradation of fatty acids predict the net synthesis of about one-third of an ATP per round of catabolism. Syntrophic metabolism entails critical oxidation-reduction reactions in which H2 or formate production would be thermodynamically unfavorable unless energy is invested. Molecular insights into the membrane processes involved in ion translocation and reverse electron transport revealed that syntrophs harbor multiple systems for reverse electron transfer. While much evidence supports the interspecies transfer of H2 and formate, other mechanisms of interspecies electron transfer exist including cysteine cycling and possibly direct interspecies electron transfer as electric current via conductive pili or (semi)conductive minerals.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Müller, Nicolai</dc:creator>
    <dc:contributor>Plugge, Caroline M.</dc:contributor>
    <dc:contributor>Sieber, Jessica R.</dc:contributor>
    <dcterms:issued>2018-03-14</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-16T15:03:43Z</dc:date>
    <dc:creator>Sieber, Jessica R.</dc:creator>
    <dc:contributor>Müller, Nicolai</dc:contributor>
    <dcterms:title>Methanogens : Syntrophic Metabolism</dcterms:title>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Springer Nature Living Reference. Biomedical and Life Sciences
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen