Publikation:

Methanogens : Syntrophic Metabolism

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Autor:innen

Sieber, Jessica R.
McInerney, Michael J.
Gunsalus, Rob P.
Plugge, Caroline M.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published

Erschienen in

STAMS, Alfons J.M., ed., Diana SOUSA, ed.. Biogenesis of Hydrocarbons. Cham: Springer, 2018, pp. 1-31. ISBN 978-3-319-53114-4. Available under: doi: 10.1007/978-3-319-53114-4_2-1

Zusammenfassung

Syntrophy is a mutualistic interaction in which two metabolically different types of microorganisms are linked by the need to keep metabolites exchanged between the two partners at low concentrations to make the overall metabolism of both organisms feasible. In most cases, the cooperation is based on the transfer of hydrogen, formate, or acetate from fermentative bacteria to methanogens to make the degradation of electron-rich substrates thermodynamically favorable. Syntrophic metabolism proceeds at very low Gibbs’ free energy changes, close to the minimum free energy change needed to conserve energy biologically, which is the energy needed to transport one proton across the cytoplasmic membrane. Pathways for syntrophic degradation of fatty acids predict the net synthesis of about one-third of an ATP per round of catabolism. Syntrophic metabolism entails critical oxidation-reduction reactions in which H2 or formate production would be thermodynamically unfavorable unless energy is invested. Molecular insights into the membrane processes involved in ion translocation and reverse electron transport revealed that syntrophs harbor multiple systems for reverse electron transfer. While much evidence supports the interspecies transfer of H2 and formate, other mechanisms of interspecies electron transfer exist including cysteine cycling and possibly direct interspecies electron transfer as electric current via conductive pili or (semi)conductive minerals.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SIEBER, Jessica R., Michael J. MCINERNEY, Nicolai MÜLLER, Bernhard SCHINK, Rob P. GUNSALUS, Caroline M. PLUGGE, 2018. Methanogens : Syntrophic Metabolism. In: STAMS, Alfons J.M., ed., Diana SOUSA, ed.. Biogenesis of Hydrocarbons. Cham: Springer, 2018, pp. 1-31. ISBN 978-3-319-53114-4. Available under: doi: 10.1007/978-3-319-53114-4_2-1
BibTex
@incollection{Sieber2018-03-14Metha-46417,
  year={2018},
  doi={10.1007/978-3-319-53114-4_2-1},
  title={Methanogens : Syntrophic Metabolism},
  isbn={978-3-319-53114-4},
  publisher={Springer},
  address={Cham},
  booktitle={Biogenesis of Hydrocarbons},
  pages={1--31},
  editor={Stams, Alfons J.M. and Sousa, Diana},
  author={Sieber, Jessica R. and McInerney, Michael J. and Müller, Nicolai and Schink, Bernhard and Gunsalus, Rob P. and Plugge, Caroline M.},
  note={Springer Nature Living Reference. Biomedical and Life Sciences}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46417">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Gunsalus, Rob P.</dc:creator>
    <dc:contributor>Schink, Bernhard</dc:contributor>
    <dc:contributor>Gunsalus, Rob P.</dc:contributor>
    <dc:creator>McInerney, Michael J.</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46417"/>
    <dc:creator>Schink, Bernhard</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-16T15:03:43Z</dcterms:available>
    <dc:contributor>McInerney, Michael J.</dc:contributor>
    <dc:creator>Plugge, Caroline M.</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:abstract xml:lang="eng">Syntrophy is a mutualistic interaction in which two metabolically different types of microorganisms are linked by the need to keep metabolites exchanged between the two partners at low concentrations to make the overall metabolism of both organisms feasible. In most cases, the cooperation is based on the transfer of hydrogen, formate, or acetate from fermentative bacteria to methanogens to make the degradation of electron-rich substrates thermodynamically favorable. Syntrophic metabolism proceeds at very low Gibbs’ free energy changes, close to the minimum free energy change needed to conserve energy biologically, which is the energy needed to transport one proton across the cytoplasmic membrane. Pathways for syntrophic degradation of fatty acids predict the net synthesis of about one-third of an ATP per round of catabolism. Syntrophic metabolism entails critical oxidation-reduction reactions in which H2 or formate production would be thermodynamically unfavorable unless energy is invested. Molecular insights into the membrane processes involved in ion translocation and reverse electron transport revealed that syntrophs harbor multiple systems for reverse electron transfer. While much evidence supports the interspecies transfer of H2 and formate, other mechanisms of interspecies electron transfer exist including cysteine cycling and possibly direct interspecies electron transfer as electric current via conductive pili or (semi)conductive minerals.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Müller, Nicolai</dc:creator>
    <dc:contributor>Plugge, Caroline M.</dc:contributor>
    <dc:contributor>Sieber, Jessica R.</dc:contributor>
    <dcterms:issued>2018-03-14</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-16T15:03:43Z</dc:date>
    <dc:creator>Sieber, Jessica R.</dc:creator>
    <dc:contributor>Müller, Nicolai</dc:contributor>
    <dcterms:title>Methanogens : Syntrophic Metabolism</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Springer Nature Living Reference. Biomedical and Life Sciences
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen