Publikation: Set Theory and Structures
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Set-theoretic and category-theoretic foundations represent different perspectives on mathematical subject matter. In particular, category-theoretic language focusses on properties that can be determined up to isomorphism within a category, whereas set theory admits of properties determined by the internal structure of the membership relation. Various objections have been raised against this aspect of set theory in the category-theoretic literature. In this article, we advocate a methodological pluralism concerning the two foundational languages, and provide a theory that fruitfully interrelates a ‘structural’ perspective to a set-theoretic one. We present a set-theoretic system that is able to talk about structures more naturally, and argue that it provides an important perspective on plausibly structural properties such as cardinality. We conclude the language of set theory can provide useful information about the notion of mathematical structure.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BARTON, Neil, Sy-David FRIEDMAN, 2019. Set Theory and Structures. In: CENTRONE, Stefania, ed., Deborah KANT, ed., Deniz SARIKAYA, ed.. Reflections on the Foundations of Mathematics : Univalent Foundations, Set Theory and General Thoughts. Cham: Springer, 2019, pp. 223-253. Synthese Library. 407. ISBN 978-3-030-15654-1. Available under: doi: 10.1007/978-3-030-15655-8_10BibTex
@incollection{Barton2019Theor-52678, year={2019}, doi={10.1007/978-3-030-15655-8_10}, title={Set Theory and Structures}, number={407}, isbn={978-3-030-15654-1}, publisher={Springer}, address={Cham}, series={Synthese Library}, booktitle={Reflections on the Foundations of Mathematics : Univalent Foundations, Set Theory and General Thoughts}, pages={223--253}, editor={Centrone, Stefania and Kant, Deborah and Sarikaya, Deniz}, author={Barton, Neil and Friedman, Sy-David} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52678"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-02T14:21:25Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2019</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52678"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dcterms:abstract xml:lang="eng">Set-theoretic and category-theoretic foundations represent different perspectives on mathematical subject matter. In particular, category-theoretic language focusses on properties that can be determined up to isomorphism within a category, whereas set theory admits of properties determined by the internal structure of the membership relation. Various objections have been raised against this aspect of set theory in the category-theoretic literature. In this article, we advocate a methodological pluralism concerning the two foundational languages, and provide a theory that fruitfully interrelates a ‘structural’ perspective to a set-theoretic one. We present a set-theoretic system that is able to talk about structures more naturally, and argue that it provides an important perspective on plausibly structural properties such as cardinality. We conclude the language of set theory can provide useful information about the notion of mathematical structure.</dcterms:abstract> <dc:contributor>Friedman, Sy-David</dc:contributor> <dc:creator>Friedman, Sy-David</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Barton, Neil</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-02T14:21:25Z</dcterms:available> <dcterms:title>Set Theory and Structures</dcterms:title> <dc:creator>Barton, Neil</dc:creator> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> </rdf:Description> </rdf:RDF>