Publikation:

Measuring incivility in parliamentary debates : validating a sentiment analysis procedure with calls to order in the Austrian Parliament

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2021

Autor:innen

Jenny, Marcelo
Kapla, Daniel

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published

Erschienen in

WALTER, Annemarie S., ed.. Political Incivility in the Parliamentary, Electoral and Media Arena : Crossing Boundaries. London: Routledge, 2021, pp. 1-11. Routledge studies on political parties and party systems. ISBN 978-0-367-46273-4

Zusammenfassung

Parliamentary debates sometimes see uncivil behavior by MPs and parliamentary rules of procedure provide instruments such as Calls to Order to sanction uncivil behavior. Incivility is an extreme form of negativity encountered in parliamentary debates. The varied forms of negativity found in parliamentary debates have made them a popular test field for sentiment analysis, the systematic measurement of valence in statements. This chapter describes a sentiment analysis procedure which combines context-sensitive word representations, crowdcoding of negativity in training sentences, and a neural network classifier to establish the level of negativity in debate statements. To validate the procedure we try to predict Calls to Order in the Austrian parliament. We find that we can predict Calls to Order from a statement's degree of negativity reasonably well. The procedure therefore offers great potential for a valid and reliable measurement of incivility in parliamentary debates.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690JENNY, Marcelo, Martin HASELMAYER, Daniel KAPLA, 2021. Measuring incivility in parliamentary debates : validating a sentiment analysis procedure with calls to order in the Austrian Parliament. In: WALTER, Annemarie S., ed.. Political Incivility in the Parliamentary, Electoral and Media Arena : Crossing Boundaries. London: Routledge, 2021, pp. 1-11. Routledge studies on political parties and party systems. ISBN 978-0-367-46273-4
BibTex
@incollection{Jenny2021Measu-56013,
  year={2021},
  title={Measuring incivility in parliamentary debates : validating a sentiment analysis procedure with calls to order in the Austrian Parliament},
  isbn={978-0-367-46273-4},
  publisher={Routledge},
  address={London},
  series={Routledge studies on political parties and party systems},
  booktitle={Political Incivility in the Parliamentary, Electoral and Media Arena : Crossing Boundaries},
  pages={1--11},
  editor={Walter, Annemarie S.},
  author={Jenny, Marcelo and Haselmayer, Martin and Kapla, Daniel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56013">
    <dcterms:title>Measuring incivility in parliamentary debates : validating a sentiment analysis procedure with calls to order in the Austrian Parliament</dcterms:title>
    <dcterms:issued>2021</dcterms:issued>
    <dc:creator>Kapla, Daniel</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56013"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-23T08:18:15Z</dc:date>
    <dc:creator>Jenny, Marcelo</dc:creator>
    <dc:contributor>Kapla, Daniel</dc:contributor>
    <dc:creator>Haselmayer, Martin</dc:creator>
    <dcterms:abstract xml:lang="eng">Parliamentary debates sometimes see uncivil behavior by MPs and parliamentary rules of procedure provide instruments such as Calls to Order to sanction uncivil behavior. Incivility is an extreme form of negativity encountered in parliamentary debates. The varied forms of negativity found in parliamentary debates have made them a popular test field for sentiment analysis, the systematic measurement of valence in statements. This chapter describes a sentiment analysis procedure which combines context-sensitive word representations, crowdcoding of negativity in training sentences, and a neural network classifier to establish the level of negativity in debate statements. To validate the procedure we try to predict Calls to Order in the Austrian parliament. We find that we can predict Calls to Order from a statement's degree of negativity reasonably well. The procedure therefore offers great potential for a valid and reliable measurement of incivility in parliamentary debates.</dcterms:abstract>
    <dc:contributor>Jenny, Marcelo</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-23T08:18:15Z</dcterms:available>
    <dc:contributor>Haselmayer, Martin</dc:contributor>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen