Publikation: Reduced-Basis Methods for PDE-Constrained Elliptic Optimal Control Problems with Uncertain Coefficients
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This thesis covers a convex optimal control problem, which possesses an elliptic PDE subjected to uncertainty as constraint.
It will be shown that with the help of the projected stochastic gradient method an optimal control over a discrete random space can be computed faster than with the projected gradient method. The determination of the necessary finite element (FE) solutions can be speeded-up by use of the reduced basis (RB) method. For the error between the FE and the reduced-order solution a-posteriori error estimates can be denoted for the state and the adjoint equation. The convergence behaviour between the FE and the reduced-order solution will be studied. The numerical results confirm the theoretical results of the convergence behaviour. Furthermore the difference between the optimal solution with and without the RB method can be bounded. The optimization with the projected stochastic gradient method and the RB method turns out to be a more efficient method.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SINNWELL, Sebastian, 2020. Reduced-Basis Methods for PDE-Constrained Elliptic Optimal Control Problems with Uncertain Coefficients [Master thesis]. Konstanz: Universität KonstanzBibTex
@mastersthesis{Sinnwell2020Reduc-49361, year={2020}, title={Reduced-Basis Methods for PDE-Constrained Elliptic Optimal Control Problems with Uncertain Coefficients}, address={Konstanz}, school={Universität Konstanz}, author={Sinnwell, Sebastian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49361"> <dc:creator>Sinnwell, Sebastian</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49361/3/Sinnwell_2-1lks3na0dovtp0.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49361/3/Sinnwell_2-1lks3na0dovtp0.pdf"/> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2020</dcterms:issued> <dcterms:abstract xml:lang="eng">This thesis covers a convex optimal control problem, which possesses an elliptic PDE subjected to uncertainty as constraint.<br />It will be shown that with the help of the projected stochastic gradient method an optimal control over a discrete random space can be computed faster than with the projected gradient method. The determination of the necessary finite element (FE) solutions can be speeded-up by use of the reduced basis (RB) method. For the error between the FE and the reduced-order solution a-posteriori error estimates can be denoted for the state and the adjoint equation. The convergence behaviour between the FE and the reduced-order solution will be studied. The numerical results confirm the theoretical results of the convergence behaviour. Furthermore the difference between the optimal solution with and without the RB method can be bounded. The optimization with the projected stochastic gradient method and the RB method turns out to be a more efficient method.</dcterms:abstract> <dc:contributor>Sinnwell, Sebastian</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-30T10:05:43Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49361"/> <dcterms:title>Reduced-Basis Methods for PDE-Constrained Elliptic Optimal Control Problems with Uncertain Coefficients</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-30T10:05:43Z</dcterms:available> </rdf:Description> </rdf:RDF>