Publikation:

Reduced-Basis Methods for PDE-Constrained Elliptic Optimal Control Problems with Uncertain Coefficients

Lade...
Vorschaubild

Dateien

Sinnwell_2-1lks3na0dovtp0.pdf
Sinnwell_2-1lks3na0dovtp0.pdfGröße: 1.01 MBDownloads: 277

Datum

2020

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Masterarbeit/Diplomarbeit
Publikationsstatus
Published

Erschienen in

Zusammenfassung

This thesis covers a convex optimal control problem, which possesses an elliptic PDE subjected to uncertainty as constraint.
It will be shown that with the help of the projected stochastic gradient method an optimal control over a discrete random space can be computed faster than with the projected gradient method. The determination of the necessary finite element (FE) solutions can be speeded-up by use of the reduced basis (RB) method. For the error between the FE and the reduced-order solution a-posteriori error estimates can be denoted for the state and the adjoint equation. The convergence behaviour between the FE and the reduced-order solution will be studied. The numerical results confirm the theoretical results of the convergence behaviour. Furthermore the difference between the optimal solution with and without the RB method can be bounded. The optimization with the projected stochastic gradient method and the RB method turns out to be a more efficient method.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

elliptic PDE with uncertain coefficients , stochastic optimization, reduced basis, RB

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SINNWELL, Sebastian, 2020. Reduced-Basis Methods for PDE-Constrained Elliptic Optimal Control Problems with Uncertain Coefficients [Master thesis]. Konstanz: Universität Konstanz
BibTex
@mastersthesis{Sinnwell2020Reduc-49361,
  year={2020},
  title={Reduced-Basis Methods for PDE-Constrained Elliptic Optimal Control Problems with Uncertain Coefficients},
  address={Konstanz},
  school={Universität Konstanz},
  author={Sinnwell, Sebastian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49361">
    <dc:creator>Sinnwell, Sebastian</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49361/3/Sinnwell_2-1lks3na0dovtp0.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49361/3/Sinnwell_2-1lks3na0dovtp0.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2020</dcterms:issued>
    <dcterms:abstract xml:lang="eng">This thesis covers a convex optimal control problem, which possesses an elliptic PDE subjected to uncertainty as constraint.&lt;br /&gt;It will be shown that with the help of the projected stochastic gradient method an optimal control over a discrete random space can be computed faster than with the projected gradient method. The determination of the necessary finite element (FE) solutions can be speeded-up by use of the reduced basis (RB) method. For the error between the FE and the reduced-order solution a-posteriori error estimates can be denoted for the state and the adjoint equation. The convergence behaviour between the FE and the reduced-order solution will be studied. The numerical results confirm the theoretical results of the convergence behaviour. Furthermore the difference between the optimal solution with and without the RB method can be bounded. The optimization with the projected stochastic gradient method and the RB method turns out to be a more efficient method.</dcterms:abstract>
    <dc:contributor>Sinnwell, Sebastian</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-30T10:05:43Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49361"/>
    <dcterms:title>Reduced-Basis Methods for PDE-Constrained Elliptic Optimal Control Problems with Uncertain Coefficients</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-30T10:05:43Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Hochschulschriftenvermerk
Konstanz, Universität Konstanz, Masterarbeit/Diplomarbeit, 2020
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen