On Bayesian mechanics : a physics of and by beliefs

Lade...
Vorschaubild
Dateien
Ramstead_2-1lfaf5d8jxygd6.PDF
Ramstead_2-1lfaf5d8jxygd6.PDFGröße: 2.73 MBDownloads: 8
Datum
2023
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
oops
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Interface Focus. Royal Society of London. 2023, 13(3), 20220029. ISSN 2042-8898. eISSN 2042-8901. Available under: doi: 10.1098/rsfs.2022.0029
Zusammenfassung

The aim of this paper is to introduce a field of study that has emerged over the last decade, called Bayesian mechanics. Bayesian mechanics is a probabilistic mechanics, comprising tools that enable us to model systems endowed with a particular partition (i.e. into particles), where the internal states (or the trajectories of internal states) of a particular system encode the parameters of beliefs about external states (or their trajectories). These tools allow us to write down mechanical theories for systems that look as if they are estimating posterior probability distributions over the causes of their sensory states. This provides a formal language for modelling the constraints, forces, potentials and other quantities determining the dynamics of such systems, especially as they entail dynamics on a space of beliefs (i.e. on a statistical manifold). Here, we will review the state of the art in the literature on the free energy principle, distinguishing between three ways in which Bayesian mechanics has been applied to particular systems (i.e. path-tracking, mode-tracking and mode-matching). We go on to examine a duality between the free energy principle and the constrained maximum entropy principle, both of which lie at the heart of Bayesian mechanics, and discuss its implications.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690RAMSTEAD, Maxwell J. D., Dalton A. R. SAKTHIVADIVEL, Conor HEINS, Magnus KOUDAHL, Beren MILLIDGE, Lancelot DA COSTA, Brennan KLEIN, Karl J. FRISTON, 2023. On Bayesian mechanics : a physics of and by beliefs. In: Interface Focus. Royal Society of London. 2023, 13(3), 20220029. ISSN 2042-8898. eISSN 2042-8901. Available under: doi: 10.1098/rsfs.2022.0029
BibTex
@article{Ramstead2023Bayes-67032,
  year={2023},
  doi={10.1098/rsfs.2022.0029},
  title={On Bayesian mechanics : a physics of and by beliefs},
  number={3},
  volume={13},
  issn={2042-8898},
  journal={Interface Focus},
  author={Ramstead, Maxwell J. D. and Sakthivadivel, Dalton A. R. and Heins, Conor and Koudahl, Magnus and Millidge, Beren and Da Costa, Lancelot and Klein, Brennan and Friston, Karl J.},
  note={Article Number: 20220029}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67032">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67032/1/Ramstead_2-1lfaf5d8jxygd6.PDF"/>
    <dc:contributor>Millidge, Beren</dc:contributor>
    <dcterms:issued>2023</dcterms:issued>
    <dc:contributor>Ramstead, Maxwell J. D.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Heins, Conor</dc:creator>
    <dc:contributor>Friston, Karl J.</dc:contributor>
    <dcterms:abstract>The aim of this paper is to introduce a field of study that has emerged over the last decade, called Bayesian mechanics. Bayesian mechanics is a probabilistic mechanics, comprising tools that enable us to model systems endowed with a particular partition (i.e. into particles), where the internal states (or the trajectories of internal states) of a particular system encode the parameters of beliefs about external states (or their trajectories). These tools allow us to write down mechanical theories for systems that look as if they are estimating posterior probability distributions over the causes of their sensory states. This provides a formal language for modelling the constraints, forces, potentials and other quantities determining the dynamics of such systems, especially as they entail dynamics on a space of beliefs (i.e. on a statistical manifold). Here, we will review the state of the art in the literature on the free energy principle, distinguishing between three ways in which Bayesian mechanics has been applied to particular systems (i.e. path-tracking, mode-tracking and mode-matching). We go on to examine a duality between the free energy principle and the constrained maximum entropy principle, both of which lie at the heart of Bayesian mechanics, and discuss its implications.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67032"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Klein, Brennan</dc:contributor>
    <dcterms:title>On Bayesian mechanics : a physics of and by beliefs</dcterms:title>
    <dc:contributor>Heins, Conor</dc:contributor>
    <dc:creator>Koudahl, Magnus</dc:creator>
    <dc:creator>Millidge, Beren</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:creator>Friston, Karl J.</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67032/1/Ramstead_2-1lfaf5d8jxygd6.PDF"/>
    <dc:contributor>Koudahl, Magnus</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <dc:creator>Sakthivadivel, Dalton A. R.</dc:creator>
    <dc:creator>Ramstead, Maxwell J. D.</dc:creator>
    <dc:contributor>Da Costa, Lancelot</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-06-02T07:29:36Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Sakthivadivel, Dalton A. R.</dc:contributor>
    <dc:creator>Klein, Brennan</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-06-02T07:29:36Z</dcterms:available>
    <dc:creator>Da Costa, Lancelot</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja