Publikation: On Bayesian mechanics : a physics of and by beliefs
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The aim of this paper is to introduce a field of study that has emerged over the last decade, called Bayesian mechanics. Bayesian mechanics is a probabilistic mechanics, comprising tools that enable us to model systems endowed with a particular partition (i.e. into particles), where the internal states (or the trajectories of internal states) of a particular system encode the parameters of beliefs about external states (or their trajectories). These tools allow us to write down mechanical theories for systems that look as if they are estimating posterior probability distributions over the causes of their sensory states. This provides a formal language for modelling the constraints, forces, potentials and other quantities determining the dynamics of such systems, especially as they entail dynamics on a space of beliefs (i.e. on a statistical manifold). Here, we will review the state of the art in the literature on the free energy principle, distinguishing between three ways in which Bayesian mechanics has been applied to particular systems (i.e. path-tracking, mode-tracking and mode-matching). We go on to examine a duality between the free energy principle and the constrained maximum entropy principle, both of which lie at the heart of Bayesian mechanics, and discuss its implications.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
RAMSTEAD, Maxwell J. D., Dalton A. R. SAKTHIVADIVEL, Conor HEINS, Magnus KOUDAHL, Beren MILLIDGE, Lancelot DA COSTA, Brennan KLEIN, Karl J. FRISTON, 2023. On Bayesian mechanics : a physics of and by beliefs. In: Interface Focus. Royal Society of London. 2023, 13(3), 20220029. ISSN 2042-8898. eISSN 2042-8901. Available under: doi: 10.1098/rsfs.2022.0029BibTex
@article{Ramstead2023Bayes-67032, year={2023}, doi={10.1098/rsfs.2022.0029}, title={On Bayesian mechanics : a physics of and by beliefs}, number={3}, volume={13}, issn={2042-8898}, journal={Interface Focus}, author={Ramstead, Maxwell J. D. and Sakthivadivel, Dalton A. R. and Heins, Conor and Koudahl, Magnus and Millidge, Beren and Da Costa, Lancelot and Klein, Brennan and Friston, Karl J.}, note={Article Number: 20220029} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67032"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67032/1/Ramstead_2-1lfaf5d8jxygd6.PDF"/> <dc:contributor>Millidge, Beren</dc:contributor> <dcterms:issued>2023</dcterms:issued> <dc:contributor>Ramstead, Maxwell J. D.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Heins, Conor</dc:creator> <dc:contributor>Friston, Karl J.</dc:contributor> <dcterms:abstract>The aim of this paper is to introduce a field of study that has emerged over the last decade, called Bayesian mechanics. Bayesian mechanics is a probabilistic mechanics, comprising tools that enable us to model systems endowed with a particular partition (i.e. into particles), where the internal states (or the trajectories of internal states) of a particular system encode the parameters of beliefs about external states (or their trajectories). These tools allow us to write down mechanical theories for systems that look as if they are estimating posterior probability distributions over the causes of their sensory states. This provides a formal language for modelling the constraints, forces, potentials and other quantities determining the dynamics of such systems, especially as they entail dynamics on a space of beliefs (i.e. on a statistical manifold). Here, we will review the state of the art in the literature on the free energy principle, distinguishing between three ways in which Bayesian mechanics has been applied to particular systems (i.e. path-tracking, mode-tracking and mode-matching). We go on to examine a duality between the free energy principle and the constrained maximum entropy principle, both of which lie at the heart of Bayesian mechanics, and discuss its implications.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67032"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Klein, Brennan</dc:contributor> <dcterms:title>On Bayesian mechanics : a physics of and by beliefs</dcterms:title> <dc:contributor>Heins, Conor</dc:contributor> <dc:creator>Koudahl, Magnus</dc:creator> <dc:creator>Millidge, Beren</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:creator>Friston, Karl J.</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/67032/1/Ramstead_2-1lfaf5d8jxygd6.PDF"/> <dc:contributor>Koudahl, Magnus</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dc:creator>Sakthivadivel, Dalton A. R.</dc:creator> <dc:creator>Ramstead, Maxwell J. D.</dc:creator> <dc:contributor>Da Costa, Lancelot</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-06-02T07:29:36Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Sakthivadivel, Dalton A. R.</dc:contributor> <dc:creator>Klein, Brennan</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-06-02T07:29:36Z</dcterms:available> <dc:creator>Da Costa, Lancelot</dc:creator> </rdf:Description> </rdf:RDF>