Nonlocal-to-Local Convergence of Cahn–Hilliard Equations : Neumann Boundary Conditions and Viscosity Terms
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We consider a class of nonlocal viscous Cahn-Hilliard equations with Neumann boundary conditions for the chemical potential. The double-well potential is allowed to be singular (e.g. of logarithmic type), while the singularity of the convolution kernel does not fall in any available existence theory under Neumann boundary conditions. We prove well-posedness for the nonlocal equation in a suitable variational sense. Secondly, we show that the solutions to the nonlocal equation converge to the corresponding solutions to the local equation, as the convolution kernels approximate a Dirac delta. The asymptotic behaviour is analyzed by means of monotone analysis and Gamma convergence results, both when the limiting local Cahn-Hilliard equation is of viscous type and of pure type.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DAVOLI, Elisa, Luca SCARPA, Lara TRUSSARDI, 2021. Nonlocal-to-Local Convergence of Cahn–Hilliard Equations : Neumann Boundary Conditions and Viscosity Terms. In: Archive for Rational Mechanics and Analysis. Springer. 2021, 239(1), pp. 117-149. ISSN 0003-9527. eISSN 1432-0673. Available under: doi: 10.1007/s00205-020-01573-9BibTex
@article{Davoli2021Nonlo-55533, year={2021}, doi={10.1007/s00205-020-01573-9}, title={Nonlocal-to-Local Convergence of Cahn–Hilliard Equations : Neumann Boundary Conditions and Viscosity Terms}, number={1}, volume={239}, issn={0003-9527}, journal={Archive for Rational Mechanics and Analysis}, pages={117--149}, author={Davoli, Elisa and Scarpa, Luca and Trussardi, Lara} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55533"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55533/1/Davoli_2-1lc36jau2d9mh9.pdf"/> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-12T12:57:28Z</dc:date> <dc:creator>Trussardi, Lara</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-12T12:57:28Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55533/1/Davoli_2-1lc36jau2d9mh9.pdf"/> <dcterms:issued>2021</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55533"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Scarpa, Luca</dc:contributor> <dc:contributor>Trussardi, Lara</dc:contributor> <dcterms:title>Nonlocal-to-Local Convergence of Cahn–Hilliard Equations : Neumann Boundary Conditions and Viscosity Terms</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Davoli, Elisa</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Davoli, Elisa</dc:creator> <dc:creator>Scarpa, Luca</dc:creator> <dcterms:abstract xml:lang="eng">We consider a class of nonlocal viscous Cahn-Hilliard equations with Neumann boundary conditions for the chemical potential. The double-well potential is allowed to be singular (e.g. of logarithmic type), while the singularity of the convolution kernel does not fall in any available existence theory under Neumann boundary conditions. We prove well-posedness for the nonlocal equation in a suitable variational sense. Secondly, we show that the solutions to the nonlocal equation converge to the corresponding solutions to the local equation, as the convolution kernels approximate a Dirac delta. The asymptotic behaviour is analyzed by means of monotone analysis and Gamma convergence results, both when the limiting local Cahn-Hilliard equation is of viscous type and of pure type.</dcterms:abstract> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>