N.E.A.T. : Novel Emergency Analysis Tool
N.E.A.T. : Novel Emergency Analysis Tool
No Thumbnail Available
Files
There are no files associated with this item.
Date
2019
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Contribution to a conference collection
Publication status
Published
Published in
IEEE Conference on Visual Analytics Science and Technology (VAST Challenge 2019 Grand Challenge)
Abstract
We present N.E.A.T. - a Visual Analytics approach to the collaborative management of large-scale emergencies. N.E.A.T. unifies the analysis and annotation of heterogeneous, uncertainty-afflicted data sources in a single, adjustable screen. Stakeholders can create individual or shared workspaces providing configurable views tailored to the needs of different emergency responders. Within each workspace, annotated findings are automatically shared in real-time for effective collaboration. We illustrate the functionality of the tool and showcase exemplary findings on the St. Himark incident.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
IEEE Conference on Visual Analytics Science and Technology, Oct 20, 2019 - Oct 25, 2019, Vancouver, Canada
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
JENTNER, Wolfgang, Juri F. BUCHMÜLLER, Fabian SPERRLE, Rita SEVASTJANOVA, Thilo SPINNER, Udo SCHLEGEL, Dirk STREEB, Hanna SCHÄFER, 2019. N.E.A.T. : Novel Emergency Analysis Tool. IEEE Conference on Visual Analytics Science and Technology. Vancouver, Canada, Oct 20, 2019 - Oct 25, 2019. In: IEEE Conference on Visual Analytics Science and Technology (VAST Challenge 2019 Grand Challenge)BibTex
@inproceedings{Jentner2019Novel-47310, year={2019}, title={N.E.A.T. : Novel Emergency Analysis Tool}, url={https://scibib.dbvis.de/publications/view/843}, booktitle={IEEE Conference on Visual Analytics Science and Technology (VAST Challenge 2019 Grand Challenge)}, author={Jentner, Wolfgang and Buchmüller, Juri F. and Sperrle, Fabian and Sevastjanova, Rita and Spinner, Thilo and Schlegel, Udo and Streeb, Dirk and Schäfer, Hanna} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47310"> <dc:creator>Jentner, Wolfgang</dc:creator> <dc:contributor>Spinner, Thilo</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Sevastjanova, Rita</dc:creator> <dcterms:abstract xml:lang="eng">We present N.E.A.T. - a Visual Analytics approach to the collaborative management of large-scale emergencies. N.E.A.T. unifies the analysis and annotation of heterogeneous, uncertainty-afflicted data sources in a single, adjustable screen. Stakeholders can create individual or shared workspaces providing configurable views tailored to the needs of different emergency responders. Within each workspace, annotated findings are automatically shared in real-time for effective collaboration. We illustrate the functionality of the tool and showcase exemplary findings on the St. Himark incident.</dcterms:abstract> <dc:contributor>Jentner, Wolfgang</dc:contributor> <dc:contributor>Schlegel, Udo</dc:contributor> <dc:contributor>Sevastjanova, Rita</dc:contributor> <dc:creator>Buchmüller, Juri F.</dc:creator> <dc:creator>Schlegel, Udo</dc:creator> <dcterms:title>N.E.A.T. : Novel Emergency Analysis Tool</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47310"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Schäfer, Hanna</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-10-24T14:45:27Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Streeb, Dirk</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Buchmüller, Juri F.</dc:contributor> <dc:contributor>Sperrle, Fabian</dc:contributor> <dcterms:issued>2019</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-10-24T14:45:27Z</dcterms:available> <dc:creator>Schäfer, Hanna</dc:creator> <dc:creator>Sperrle, Fabian</dc:creator> <dc:contributor>Streeb, Dirk</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Spinner, Thilo</dc:creator> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
URL of original publication
Test date of URL
2019-10-24
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes