Publikation: N.E.A.T. : Novel Emergency Analysis Tool
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2019
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
IEEE Conference on Visual Analytics Science and Technology (VAST Challenge 2019 Grand Challenge). 2019
Zusammenfassung
We present N.E.A.T. - a Visual Analytics approach to the collaborative management of large-scale emergencies. N.E.A.T. unifies the analysis and annotation of heterogeneous, uncertainty-afflicted data sources in a single, adjustable screen. Stakeholders can create individual or shared workspaces providing configurable views tailored to the needs of different emergency responders. Within each workspace, annotated findings are automatically shared in real-time for effective collaboration. We illustrate the functionality of the tool and showcase exemplary findings on the St. Himark incident.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
IEEE Conference on Visual Analytics Science and Technology, 20. Okt. 2019 - 25. Okt. 2019, Vancouver, Canada
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
JENTNER, Wolfgang, Juri F. BUCHMÜLLER, Fabian SPERRLE, Rita SEVASTJANOVA, Thilo SPINNER, Udo SCHLEGEL, Dirk STREEB, Hanna SCHÄFER, 2019. N.E.A.T. : Novel Emergency Analysis Tool. IEEE Conference on Visual Analytics Science and Technology. Vancouver, Canada, 20. Okt. 2019 - 25. Okt. 2019. In: IEEE Conference on Visual Analytics Science and Technology (VAST Challenge 2019 Grand Challenge). 2019BibTex
@inproceedings{Jentner2019Novel-47310, year={2019}, title={N.E.A.T. : Novel Emergency Analysis Tool}, url={https://scibib.dbvis.de/publications/view/843}, booktitle={IEEE Conference on Visual Analytics Science and Technology (VAST Challenge 2019 Grand Challenge)}, author={Jentner, Wolfgang and Buchmüller, Juri F. and Sperrle, Fabian and Sevastjanova, Rita and Spinner, Thilo and Schlegel, Udo and Streeb, Dirk and Schäfer, Hanna} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47310"> <dc:creator>Jentner, Wolfgang</dc:creator> <dc:contributor>Spinner, Thilo</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Sevastjanova, Rita</dc:creator> <dcterms:abstract xml:lang="eng">We present N.E.A.T. - a Visual Analytics approach to the collaborative management of large-scale emergencies. N.E.A.T. unifies the analysis and annotation of heterogeneous, uncertainty-afflicted data sources in a single, adjustable screen. Stakeholders can create individual or shared workspaces providing configurable views tailored to the needs of different emergency responders. Within each workspace, annotated findings are automatically shared in real-time for effective collaboration. We illustrate the functionality of the tool and showcase exemplary findings on the St. Himark incident.</dcterms:abstract> <dc:contributor>Jentner, Wolfgang</dc:contributor> <dc:contributor>Schlegel, Udo</dc:contributor> <dc:contributor>Sevastjanova, Rita</dc:contributor> <dc:creator>Buchmüller, Juri F.</dc:creator> <dc:creator>Schlegel, Udo</dc:creator> <dcterms:title>N.E.A.T. : Novel Emergency Analysis Tool</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47310"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Schäfer, Hanna</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-10-24T14:45:27Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Streeb, Dirk</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Buchmüller, Juri F.</dc:contributor> <dc:contributor>Sperrle, Fabian</dc:contributor> <dcterms:issued>2019</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-10-24T14:45:27Z</dcterms:available> <dc:creator>Schäfer, Hanna</dc:creator> <dc:creator>Sperrle, Fabian</dc:creator> <dc:contributor>Streeb, Dirk</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Spinner, Thilo</dc:creator> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
URL der Originalveröffentl.
Prüfdatum der URL
2019-10-24
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja