EncoderMap(II) : Visualizing important molecular motions with improved generation of protein conformations

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2019
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Chemical Information and Modeling. 2019, 59(11), pp. 4550-4560. ISSN 1549-9596. eISSN 1549-960X. Available under: doi: 10.1021/acs.jcim.9b00675
Zusammenfassung

Dimensionality reduction can be used to project high-dimensional molecular data into a simplified, low-dimensional map. One feature of our recently introduced dimensionality reduction technique EncoderMap, which relies on the combination of an autoencoder with multidimensional scaling, is its ability to do the reverse. It is able to generate conformations for any selected points in the low-dimensional map. This transfers the simplified, low-dimensional map back into the high-dimensional conformational space. Although the output is again high-dimensional, certain aspects of the simplification are preserved. The generated conformations only mirror the most dominant conformational differences that determine the positions of conformational states in the low-dimensional map. This allows to depict such differences and - in consequence - visualize molecular motions and gives a unique perspective on high-dimensional conformational data. In our previous work protein conformations described in backbone dihedral angle space were used as input for EncoderMap, and conformations were also generated in this space. For large proteins, however, the generation of conformations is inaccurate with this approach due to the local character of backbone dihedral angles. Here, we present an improved variant of EncoderMap which is able to generate large protein conformations that are accurate in short-range and long-range order. This is achieved by differentiable reconstruction of Cartesian coordinates from the generated dihedrals, which allows to add a contribution to the cost function that monitors the accuracy of all pairwise distances between the C α -atoms of the generated conformations. The improved capabilities to generate conformations of large, even multidomain, proteins are demonstrated for two examples: diubiquitin and a part of the Ssa1 Hsp70 yeast chaperone. We show that the improved variant of EncoderMap can nicely visualize motions of protein domains relative to each other but is also able to highlight important conformational changes within the individual domains.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
540 Chemie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690LEMKE, Tobias, Andrej BERG, Alok JAIN, Christine PETER, 2019. EncoderMap(II) : Visualizing important molecular motions with improved generation of protein conformations. In: Journal of Chemical Information and Modeling. 2019, 59(11), pp. 4550-4560. ISSN 1549-9596. eISSN 1549-960X. Available under: doi: 10.1021/acs.jcim.9b00675
BibTex
@article{Lemke2019-11-25Encod-47353,
  year={2019},
  doi={10.1021/acs.jcim.9b00675},
  title={EncoderMap(II) : Visualizing important molecular motions with improved generation of protein conformations},
  number={11},
  volume={59},
  issn={1549-9596},
  journal={Journal of Chemical Information and Modeling},
  pages={4550--4560},
  author={Lemke, Tobias and Berg, Andrej and Jain, Alok and Peter, Christine}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47353">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>EncoderMap(II) : Visualizing important molecular motions with improved generation of protein conformations</dcterms:title>
    <dc:creator>Jain, Alok</dc:creator>
    <dcterms:abstract xml:lang="eng">Dimensionality reduction can be used to project high-dimensional molecular data into a simplified, low-dimensional map. One feature of our recently introduced dimensionality reduction technique EncoderMap, which relies on the combination of an autoencoder with multidimensional scaling, is its ability to do the reverse. It is able to generate conformations for any selected points in the low-dimensional map. This transfers the simplified, low-dimensional map back into the high-dimensional conformational space. Although the output is again high-dimensional, certain aspects of the simplification are preserved. The generated conformations only mirror the most dominant conformational differences that determine the positions of conformational states in the low-dimensional map. This allows to depict such differences and - in consequence - visualize molecular motions and gives a unique perspective on high-dimensional conformational data. In our previous work protein conformations described in backbone dihedral angle space were used as input for EncoderMap, and conformations were also generated in this space. For large proteins, however, the generation of conformations is inaccurate with this approach due to the local character of backbone dihedral angles. Here, we present an improved variant of EncoderMap which is able to generate large protein conformations that are accurate in short-range and long-range order. This is achieved by differentiable reconstruction of Cartesian coordinates from the generated dihedrals, which allows to add a contribution to the cost function that monitors the accuracy of all pairwise distances between the C α -atoms of the generated conformations. The improved capabilities to generate conformations of large, even multidomain, proteins are demonstrated for two examples: diubiquitin and a part of the Ssa1 Hsp70 yeast chaperone. We show that the improved variant of EncoderMap can nicely visualize motions of protein domains relative to each other but is also able to highlight important conformational changes within the individual domains.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47353"/>
    <dc:creator>Lemke, Tobias</dc:creator>
    <dc:creator>Berg, Andrej</dc:creator>
    <dc:contributor>Jain, Alok</dc:contributor>
    <dc:contributor>Peter, Christine</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-11-05T15:46:20Z</dc:date>
    <dc:creator>Peter, Christine</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-11-05T15:46:20Z</dcterms:available>
    <dc:contributor>Berg, Andrej</dc:contributor>
    <dcterms:issued>2019-11-25</dcterms:issued>
    <dc:contributor>Lemke, Tobias</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen