Publikation: Shape-Embedded-Histograms for Visual Data Mining
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Scatterplots are widely used in exploratory data analysis and class visualization. The advantages of scatterplots are that they are easy to understand and allow the user to draw conclusions about the attributes which span the projection screen. Unfortunately, scatterplots have the overplotting problem which is especially critical when high-dimensional data are mapped to low-dimensional visualizations. Overplotting makes it hard to detect the structure in the data, such as dependencies or areas of high density. In this paper we show that by extending the concept of Pixel Validity (1) the problem of overplotting or occlusion can be avoided and (2) the user has the possibility to see information about an additional third variable. In our extension of the Pixel Validity concept, we summarize the data which are projected onto a given region by generating a histogram over the required attribute. This is then embedded in the visualization by a pixel-based technique.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
AMIR, Amihood, Reuven KASHI, Daniel A. KEIM, Nathan S. NETANYAHU, Markus WAWRYNIUK, 2004. Shape-Embedded-Histograms for Visual Data Mining. VisSym 2004. Konstanz, Germany, 19. Mai 2004 - 21. Mai 2004. In: VisSym 2004: Joint Eurographics/IEEE TCVG Symposium on Visualization. 2004, pp. 55-64. Available under: doi: 10.2312/VisSym/VisSym04/055-064BibTex
@inproceedings{Amir2004Shape-5572, year={2004}, doi={10.2312/VisSym/VisSym04/055-064}, title={Shape-Embedded-Histograms for Visual Data Mining}, booktitle={VisSym 2004: Joint Eurographics/IEEE TCVG Symposium on Visualization}, pages={55--64}, author={Amir, Amihood and Kashi, Reuven and Keim, Daniel A. and Netanyahu, Nathan S. and Wawryniuk, Markus} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5572"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5572/1/Shape_Embedded_Histograms_for_Visual_Data_Mining.pdf"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Netanyahu, Nathan S.</dc:creator> <dc:contributor>Netanyahu, Nathan S.</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:31Z</dcterms:available> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:bibliographicCitation>First publ. in: VisSym 2004: Joint Eurographics/IEEE TCVG Symposium on Visualization; Konstanz, Germany, May 19-21, 2004, pp. 55-64</dcterms:bibliographicCitation> <dc:contributor>Amir, Amihood</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Kashi, Reuven</dc:contributor> <dc:creator>Wawryniuk, Markus</dc:creator> <dc:format>application/pdf</dc:format> <dcterms:issued>2004</dcterms:issued> <dc:contributor>Wawryniuk, Markus</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5572"/> <dc:creator>Amir, Amihood</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:31Z</dc:date> <dc:creator>Kashi, Reuven</dc:creator> <dcterms:title>Shape-Embedded-Histograms for Visual Data Mining</dcterms:title> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:abstract xml:lang="eng">Scatterplots are widely used in exploratory data analysis and class visualization. The advantages of scatterplots are that they are easy to understand and allow the user to draw conclusions about the attributes which span the projection screen. Unfortunately, scatterplots have the overplotting problem which is especially critical when high-dimensional data are mapped to low-dimensional visualizations. Overplotting makes it hard to detect the structure in the data, such as dependencies or areas of high density. In this paper we show that by extending the concept of Pixel Validity (1) the problem of overplotting or occlusion can be avoided and (2) the user has the possibility to see information about an additional third variable. In our extension of the Pixel Validity concept, we summarize the data which are projected onto a given region by generating a histogram over the required attribute. This is then embedded in the visualization by a pixel-based technique.</dcterms:abstract> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5572/1/Shape_Embedded_Histograms_for_Visual_Data_Mining.pdf"/> </rdf:Description> </rdf:RDF>