Publikation:

Projected Runge–Kutta methods for index 3 differential–algebraic equations near equilibria, periodic orbits and attracting sets

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2008

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IMA Journal of Numerical Analysis. Oxford University Press (OUP). 2008, 28(2), pp. 274-291. ISSN 0272-4979. eISSN 1464-3642. Available under: doi: 10.1093/imanum/drm007

Zusammenfassung

In the present paper, we analyse the geometric properties of projected Runge–Kutta methods for the solution of index 3 differential–algebraic equations in the Hessenberg form. We show that the geometric phase portrait is well reproduced under discretization in the vicinity of equilibria, periodic orbits or asymptotically stable invariant sets. The main tools are embedding techniques and an invariant manifold theorem which allow a reduction of the problem to the classical ordinary differential equation case.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHROPP, Johannes, 2008. Projected Runge–Kutta methods for index 3 differential–algebraic equations near equilibria, periodic orbits and attracting sets. In: IMA Journal of Numerical Analysis. Oxford University Press (OUP). 2008, 28(2), pp. 274-291. ISSN 0272-4979. eISSN 1464-3642. Available under: doi: 10.1093/imanum/drm007
BibTex
@article{Schropp2008Proje-58675,
  year={2008},
  doi={10.1093/imanum/drm007},
  title={Projected Runge–Kutta methods for index 3 differential–algebraic equations near equilibria, periodic orbits and attracting sets},
  number={2},
  volume={28},
  issn={0272-4979},
  journal={IMA Journal of Numerical Analysis},
  pages={274--291},
  author={Schropp, Johannes}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58675">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-22T07:26:25Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58675"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-22T07:26:25Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dcterms:title>Projected Runge–Kutta methods for index 3 differential–algebraic equations near equilibria, periodic orbits and attracting sets</dcterms:title>
    <dc:contributor>Schropp, Johannes</dc:contributor>
    <dc:creator>Schropp, Johannes</dc:creator>
    <dcterms:abstract xml:lang="eng">In the present paper, we analyse the geometric properties of projected Runge–Kutta methods for the solution of index 3 differential–algebraic equations in the Hessenberg form. We show that the geometric phase portrait is well reproduced under discretization in the vicinity of equilibria, periodic orbits or asymptotically stable invariant sets. The main tools are embedding techniques and an invariant manifold theorem which allow a reduction of the problem to the classical ordinary differential equation case.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2008</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen