Publikation:

On the trace operatorfor functions of bounded A-variation

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2020

Autor:innen

Breit, Dominic
Diening, Lars

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Analysis & PDE. Mathematical Sciences Publishers (MSP). 2020, 13(2), pp. 559-594. ISSN 2157-5045. eISSN 1948-206X. Available under: doi: 10.2140/apde.2020.13.559

Zusammenfassung

We consider the space BVA(Ω) of functions of bounded A-variation. For a given first-order linear homogeneous differential operator with constant coefficients A, this is the space of L1-functions u:Ω→RN such that the distributional differential expression Au is a finite (vectorial) Radon measure. We show that for Lipschitz domains Ω⊂Rn, BVA(Ω)-functions have an L1(∂Ω)-trace if and only if A is C-elliptic (or, equivalently, if the kernel of A is finite-dimensional). The existence of an L1(∂Ω)-trace was previously only known for the special cases that Au coincides either with the full or the symmetric gradient of the function u (and hence covered the special cases BV or BD). As a main novelty, we do not use the fundamental theorem of calculus to construct the trace operator (an approach which is only available in the BV- and BD-settings) but rather compare projections onto the nullspace of A as we approach the boundary. As a sample application, we study the Dirichlet problem for quasiconvex variational functionals with linear growth depending on Au.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

trace operator, functions of bounded A-variation, linear growth functionals

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BREIT, Dominic, Lars DIENING, Franz GMEINEDER, 2020. On the trace operatorfor functions of bounded A-variation. In: Analysis & PDE. Mathematical Sciences Publishers (MSP). 2020, 13(2), pp. 559-594. ISSN 2157-5045. eISSN 1948-206X. Available under: doi: 10.2140/apde.2020.13.559
BibTex
@article{Breit2020trace-54081,
  year={2020},
  doi={10.2140/apde.2020.13.559},
  title={On the trace operatorfor functions of bounded A-variation},
  number={2},
  volume={13},
  issn={2157-5045},
  journal={Analysis & PDE},
  pages={559--594},
  author={Breit, Dominic and Diening, Lars and Gmeineder, Franz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54081">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Breit, Dominic</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-23T12:49:36Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54081"/>
    <dcterms:abstract xml:lang="eng">We consider the space BV&lt;sup&gt;A&lt;/sup&gt;(Ω) of functions of bounded A-variation. For a given first-order linear homogeneous differential operator with constant coefficients A, this is the space of L&lt;sup&gt;1&lt;/sup&gt;-functions u:Ω→R&lt;sup&gt;N&lt;/sup&gt; such that the distributional differential expression Au is a finite (vectorial) Radon measure. We show that for Lipschitz domains Ω⊂R&lt;sup&gt;n&lt;/sup&gt;, BV&lt;sup&gt;A&lt;/sup&gt;(Ω)-functions have an L&lt;sup&gt;1&lt;/sup&gt;(∂Ω)-trace if and only if A is C-elliptic (or, equivalently, if the kernel of A is finite-dimensional). The existence of an L&lt;sup&gt;1&lt;/sup&gt;(∂Ω)-trace was previously only known for the special cases that Au coincides either with the full or the symmetric gradient of the function u (and hence covered the special cases BV or BD). As a main novelty, we do not use the fundamental theorem of calculus to construct the trace operator (an approach which is only available in the BV- and BD-settings) but rather compare projections onto the nullspace of A as we approach the boundary. As a sample application, we study the Dirichlet problem for quasiconvex variational functionals with linear growth depending on Au.</dcterms:abstract>
    <dc:creator>Diening, Lars</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Gmeineder, Franz</dc:creator>
    <dc:contributor>Gmeineder, Franz</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-23T12:49:36Z</dcterms:available>
    <dc:creator>Breit, Dominic</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2020</dcterms:issued>
    <dcterms:title>On the trace operatorfor functions of bounded A-variation</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Diening, Lars</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt
Diese Publikation teilen