Publikation: On the trace operatorfor functions of bounded A-variation
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We consider the space BVA(Ω) of functions of bounded A-variation. For a given first-order linear homogeneous differential operator with constant coefficients A, this is the space of L1-functions u:Ω→RN such that the distributional differential expression Au is a finite (vectorial) Radon measure. We show that for Lipschitz domains Ω⊂Rn, BVA(Ω)-functions have an L1(∂Ω)-trace if and only if A is C-elliptic (or, equivalently, if the kernel of A is finite-dimensional). The existence of an L1(∂Ω)-trace was previously only known for the special cases that Au coincides either with the full or the symmetric gradient of the function u (and hence covered the special cases BV or BD). As a main novelty, we do not use the fundamental theorem of calculus to construct the trace operator (an approach which is only available in the BV- and BD-settings) but rather compare projections onto the nullspace of A as we approach the boundary. As a sample application, we study the Dirichlet problem for quasiconvex variational functionals with linear growth depending on Au.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BREIT, Dominic, Lars DIENING, Franz GMEINEDER, 2020. On the trace operatorfor functions of bounded A-variation. In: Analysis & PDE. Mathematical Sciences Publishers (MSP). 2020, 13(2), pp. 559-594. ISSN 2157-5045. eISSN 1948-206X. Available under: doi: 10.2140/apde.2020.13.559BibTex
@article{Breit2020trace-54081, year={2020}, doi={10.2140/apde.2020.13.559}, title={On the trace operatorfor functions of bounded A-variation}, number={2}, volume={13}, issn={2157-5045}, journal={Analysis & PDE}, pages={559--594}, author={Breit, Dominic and Diening, Lars and Gmeineder, Franz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54081"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Breit, Dominic</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-23T12:49:36Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54081"/> <dcterms:abstract xml:lang="eng">We consider the space BV<sup>A</sup>(Ω) of functions of bounded A-variation. For a given first-order linear homogeneous differential operator with constant coefficients A, this is the space of L<sup>1</sup>-functions u:Ω→R<sup>N</sup> such that the distributional differential expression Au is a finite (vectorial) Radon measure. We show that for Lipschitz domains Ω⊂R<sup>n</sup>, BV<sup>A</sup>(Ω)-functions have an L<sup>1</sup>(∂Ω)-trace if and only if A is C-elliptic (or, equivalently, if the kernel of A is finite-dimensional). The existence of an L<sup>1</sup>(∂Ω)-trace was previously only known for the special cases that Au coincides either with the full or the symmetric gradient of the function u (and hence covered the special cases BV or BD). As a main novelty, we do not use the fundamental theorem of calculus to construct the trace operator (an approach which is only available in the BV- and BD-settings) but rather compare projections onto the nullspace of A as we approach the boundary. As a sample application, we study the Dirichlet problem for quasiconvex variational functionals with linear growth depending on Au.</dcterms:abstract> <dc:creator>Diening, Lars</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Gmeineder, Franz</dc:creator> <dc:contributor>Gmeineder, Franz</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-23T12:49:36Z</dcterms:available> <dc:creator>Breit, Dominic</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:issued>2020</dcterms:issued> <dcterms:title>On the trace operatorfor functions of bounded A-variation</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Diening, Lars</dc:contributor> </rdf:Description> </rdf:RDF>