Publikation:

A Deep Dive into Perturbations as Evaluation Technique for Time Series XAI

Lade...
Vorschaubild

Dateien

Schlegel_2-1l2z71qk6ds6j4.pdf
Schlegel_2-1l2z71qk6ds6j4.pdfGröße: 1.7 MBDownloads: 4

Datum

2023

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz
oops

Angaben zur Forschungsförderung

Institutionen der Bundesrepublik Deutschland: 13N16242

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

LONGO, Luca, Hrsg.. Explainable Artificial Intelligence : First World Conference, xAI 2023, Proceedings. Cham: Springer, 2023, S. 165-180. Communications in Computer and Information Science (CCIS). 1902. ISBN 978-3-031-44069-4. Verfügbar unter: doi: 10.1007/978-3-031-44070-0_9

Zusammenfassung

Explainable Artificial Intelligence (XAI) has gained significant attention recently as the demand for transparency and interpretability of machine learning models has increased. In particular, XAI for time series data has become increasingly important in finance, healthcare, and climate science. However, evaluating the quality of explanations, such as attributions provided by XAI techniques, remains challenging. This paper provides an in-depth analysis of using perturbations to evaluate attributions extracted from time series models. A perturbation analysis involves systematically modifying the input data and evaluating the impact on the attributions generated by the XAI method. We apply this approach to several state-of-the-art XAI techniques and evaluate their performance on three time series classification datasets. Our results demonstrate that the perturbation analysis approach can effectively evaluate the quality of attributions and provide insights into the strengths and limitations of XAI techniques. Such an approach can guide the selection of XAI methods for time series data, e.g., focusing on return time rather than precision, and facilitate the development of more reliable and interpretable machine learning models for time series analysis.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

1st World Conference on Explainable Artificial Intelligence (xAI 2023), 26. Juli 2023 - 28. Juli 2023, Lisbon, Portugal
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHLEGEL, Udo, Daniel A. KEIM, 2023. A Deep Dive into Perturbations as Evaluation Technique for Time Series XAI. 1st World Conference on Explainable Artificial Intelligence (xAI 2023). Lisbon, Portugal, 26. Juli 2023 - 28. Juli 2023. In: LONGO, Luca, Hrsg.. Explainable Artificial Intelligence : First World Conference, xAI 2023, Proceedings. Cham: Springer, 2023, S. 165-180. Communications in Computer and Information Science (CCIS). 1902. ISBN 978-3-031-44069-4. Verfügbar unter: doi: 10.1007/978-3-031-44070-0_9
BibTex
@inproceedings{Schlegel2023intoP-70354,
  year={2023},
  doi={10.1007/978-3-031-44070-0_9},
  title={A Deep Dive into Perturbations as Evaluation Technique for Time Series XAI},
  number={1902},
  isbn={978-3-031-44069-4},
  publisher={Springer},
  address={Cham},
  series={Communications in Computer and Information Science (CCIS)},
  booktitle={Explainable Artificial Intelligence : First World Conference, xAI 2023, Proceedings},
  pages={165--180},
  editor={Longo, Luca},
  author={Schlegel, Udo and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70354">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-07-09T09:02:18Z</dc:date>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70354"/>
    <dc:contributor>Schlegel, Udo</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70354/1/Schlegel_2-1l2z71qk6ds6j4.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70354/1/Schlegel_2-1l2z71qk6ds6j4.pdf"/>
    <dcterms:issued>2023</dcterms:issued>
    <dc:creator>Schlegel, Udo</dc:creator>
    <dcterms:title>A Deep Dive into Perturbations as Evaluation Technique for Time Series XAI</dcterms:title>
    <dcterms:abstract>Explainable Artificial Intelligence (XAI) has gained significant attention recently as the demand for transparency and interpretability of machine learning models has increased. In particular, XAI for time series data has become increasingly important in finance, healthcare, and climate science. However, evaluating the quality of explanations, such as attributions provided by XAI techniques, remains challenging. This paper provides an in-depth analysis of using perturbations to evaluate attributions extracted from time series models. A perturbation analysis involves systematically modifying the input data and evaluating the impact on the attributions generated by the XAI method. We apply this approach to several state-of-the-art XAI techniques and evaluate their performance on three time series classification datasets. Our results demonstrate that the perturbation analysis approach can effectively evaluate the quality of attributions and provide insights into the strengths and limitations of XAI techniques. Such an approach can guide the selection of XAI methods for time series data, e.g., focusing on return time rather than precision, and facilitate the development of more reliable and interpretable machine learning models for time series analysis.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-07-09T09:02:18Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen