Publikation: Frames : Data-driven Windows
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Traditional Data Stream Management Systems (DSMS) segment data streams using windows that are defined either by a time interval or a number of tuples. Such windows are fixed—the definition unvarying over the course of a stream—and are defined based on external properties unrelated to the data content of the stream. However, streams and their con- tent do vary over time—the rate of a data stream may vary or the data distribution of the content may vary. The mismatch between a fixed stream segmentation and a variable stream motivates the need for a more flexible, expressive and physically independent stream segmentation. We introduce a new stream segmentation technique, called frames. Frames segment streams based on data content. We present a theory and implementation of frames and show the utility of frames for a variety of applications.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GROSSNIKLAUS, Michael, David MAIER, James MILLER, Sharmadha MOORTHY, Kristin TUFTE, 2016. Frames : Data-driven Windows. 10th ACM International Conference on Distributed and Event-Based Systems. Irvine, CA, USA, 20. Juni 2016 - 24. Juni 2016. In: Proceedings of the 10th ACM International Conference on Distributed and Event-Based Systems (DEBS). New York, NY: ACM, 2016, pp. 13-24. ISBN 978-1-4503-4021-2. Available under: doi: 10.1145/2933267.2933304BibTex
@inproceedings{Grossniklaus2016Frame-33848, year={2016}, doi={10.1145/2933267.2933304}, title={Frames : Data-driven Windows}, isbn={978-1-4503-4021-2}, publisher={ACM}, address={New York, NY}, booktitle={Proceedings of the 10th ACM International Conference on Distributed and Event-Based Systems (DEBS)}, pages={13--24}, author={Grossniklaus, Michael and Maier, David and Miller, James and Moorthy, Sharmadha and Tufte, Kristin} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33848"> <dcterms:issued>2016</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33848/1/DEBS2016.pdf"/> <dc:contributor>Maier, David</dc:contributor> <dc:creator>Moorthy, Sharmadha</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-05-09T15:47:36Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33848"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-05-09T15:47:36Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">Traditional Data Stream Management Systems (DSMS) segment data streams using windows that are defined either by a time interval or a number of tuples. Such windows are fixed—the definition unvarying over the course of a stream—and are defined based on external properties unrelated to the data content of the stream. However, streams and their con- tent do vary over time—the rate of a data stream may vary or the data distribution of the content may vary. The mismatch between a fixed stream segmentation and a variable stream motivates the need for a more flexible, expressive and physically independent stream segmentation. We introduce a new stream segmentation technique, called frames. Frames segment streams based on data content. We present a theory and implementation of frames and show the utility of frames for a variety of applications.</dcterms:abstract> <dc:creator>Miller, James</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Moorthy, Sharmadha</dc:contributor> <dc:creator>Grossniklaus, Michael</dc:creator> <dcterms:title>Frames : Data-driven Windows</dcterms:title> <dc:contributor>Grossniklaus, Michael</dc:contributor> <dc:creator>Tufte, Kristin</dc:creator> <dc:contributor>Tufte, Kristin</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Miller, James</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Maier, David</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33848/1/DEBS2016.pdf"/> </rdf:Description> </rdf:RDF>