Publikation: Allylferrocenylselenide and the synthesis of the first seleno-substituted allenylidene complex: synthesis, spectroscopy, electrochemistry and the effect of electron transfer from the ferrocenylselenyl subunit
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Allylferrocenylselenide (2) is prepared from diferrocenyldiselenide (1Se) which was characterized along with its sulfur analog 1S by X-ray structure analysis. In the crystal lattice the packing is determined by ‘point-to-face’ CHcdots, three dots, centeredπ interactions with close contacts between the CH π donors and cyclopentadienyl rings as the π acceptors. Compound 2 is then used in the trapping of the primary butatrienylidene intermediate trans-[ClRu(dppm)2=C=C=C=CH2]+. The isolated product, trans-[Cl(dppm)2Ru=C=C=C(SeFc)(C4H7)]+ (3) (Fc=ferrocenyl), represents the first seleno-substituted allenylidene complex to be reported to date. Compound 3 is formed in a sequence involving regioselective addition of the selenium nucleophile to Cγ followed by hetero-Cope-rearrangement of the allyl vinyl substituted SeR3+ cation. Its spectroscopic properties place 3 at an intermediate position between sulfur and arene substituted all-carbon allenylidene complexes of the same metal fragment. The selenoallenylidene complex 3 contains a redox active ferrocenyl substituent attached to the heteroatom giving rise to reversible electrochemistry. ESR spectroscopy proves that electron transfer occurs from this site and its effect on the spectroscopic properties of 3 is probed by combining electrochemistry and IR or UV–vis/NIR spectroscopy by in situ techniques. In contrast, the reversible reduction primarily involves the allenylidene ligand as ascertained by ESR spectroscopy. In situ spectro-electrochemical techniques reveal how the reduction affects the bonding within the unsaturated ligand.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HARTMANN, Stephan, Rainer F. WINTER, Thomas SCHIERING, Matthias WANNER, 2001. Allylferrocenylselenide and the synthesis of the first seleno-substituted allenylidene complex: synthesis, spectroscopy, electrochemistry and the effect of electron transfer from the ferrocenylselenyl subunit. In: Journal of Organometallic Chemistry. 2001, 637-639, pp. 240-250. ISSN 0022-328X. Available under: doi: 10.1016/S0022-328X(01)00910-XBibTex
@article{Hartmann2001Allyl-13832, year={2001}, doi={10.1016/S0022-328X(01)00910-X}, title={Allylferrocenylselenide and the synthesis of the first seleno-substituted allenylidene complex: synthesis, spectroscopy, electrochemistry and the effect of electron transfer from the ferrocenylselenyl subunit}, volume={637-639}, issn={0022-328X}, journal={Journal of Organometallic Chemistry}, pages={240--250}, author={Hartmann, Stephan and Winter, Rainer F. and Schiering, Thomas and Wanner, Matthias} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/13832"> <dc:contributor>Wanner, Matthias</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/13832"/> <dc:creator>Winter, Rainer F.</dc:creator> <dcterms:title>Allylferrocenylselenide and the synthesis of the first seleno-substituted allenylidene complex: synthesis, spectroscopy, electrochemistry and the effect of electron transfer from the ferrocenylselenyl subunit</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Schiering, Thomas</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-06-27T12:08:54Z</dcterms:available> <dc:creator>Hartmann, Stephan</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:bibliographicCitation>First publ. in: Journal of Organometallic Chemistry 637-639 (2001), pp. 240-250</dcterms:bibliographicCitation> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/13832/1/winter.pdf"/> <dcterms:issued>2001</dcterms:issued> <dcterms:abstract xml:lang="eng">Allylferrocenylselenide (2) is prepared from diferrocenyldiselenide (1Se) which was characterized along with its sulfur analog 1S by X-ray structure analysis. In the crystal lattice the packing is determined by ‘point-to-face’ CHcdots, three dots, centeredπ interactions with close contacts between the CH π donors and cyclopentadienyl rings as the π acceptors. Compound 2 is then used in the trapping of the primary butatrienylidene intermediate trans-[ClRu(dppm)2=C=C=C=CH2]+. The isolated product, trans-[Cl(dppm)2Ru=C=C=C(SeFc)(C4H7)]+ (3) (Fc=ferrocenyl), represents the first seleno-substituted allenylidene complex to be reported to date. Compound 3 is formed in a sequence involving regioselective addition of the selenium nucleophile to Cγ followed by hetero-Cope-rearrangement of the allyl vinyl substituted SeR3+ cation. Its spectroscopic properties place 3 at an intermediate position between sulfur and arene substituted all-carbon allenylidene complexes of the same metal fragment. The selenoallenylidene complex 3 contains a redox active ferrocenyl substituent attached to the heteroatom giving rise to reversible electrochemistry. ESR spectroscopy proves that electron transfer occurs from this site and its effect on the spectroscopic properties of 3 is probed by combining electrochemistry and IR or UV–vis/NIR spectroscopy by in situ techniques. In contrast, the reversible reduction primarily involves the allenylidene ligand as ascertained by ESR spectroscopy. In situ spectro-electrochemical techniques reveal how the reduction affects the bonding within the unsaturated ligand.</dcterms:abstract> <dc:creator>Wanner, Matthias</dc:creator> <dc:contributor>Winter, Rainer F.</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/13832/1/winter.pdf"/> <dc:contributor>Hartmann, Stephan</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-06-27T12:08:54Z</dc:date> <dc:contributor>Schiering, Thomas</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>