Publikation: Attached and separated rotating flow over a finite height ridge
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This article discusses the effect of rotation on the boundary layer in high Reynolds number flow over a ridge using a numerical method based on stabilized finite elements that captures steady solutions up to a Reynolds number of order 106. The results are validated against boundary layer computations in shallow flows and for deep flows against experimental observations reported in Machicoane et al. [Phys. Rev. Fluids 3, 034801 (2018)]. In all cases considered the boundary layer remains attached, even at arbitrarily large Reynolds numbers, provided the Rossby number of the flow is less than some critical Rossby number of order unity. At any fixed Rossby number larger than this critical value, the flow detaches at sufficiently high Reynolds number to form a steady recirculating region in the lee of the ridge. At even higher Reynolds numbers no steady flow is found. This disappearance of steady solutions closely reproduces the transition to unsteadiness seen in the laboratory.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FREI, Stefan, Erik BURMAN, Edward JOHNSON, 2024. Attached and separated rotating flow over a finite height ridge. In: Physical Review Fluids. American Physical Society (APS). 2024, 9(8), 084801. eISSN 2469-990X. Verfügbar unter: doi: 10.1103/physrevfluids.9.084801BibTex
@article{Frei2024-08-02Attac-70732, year={2024}, doi={10.1103/physrevfluids.9.084801}, title={Attached and separated rotating flow over a finite height ridge}, number={8}, volume={9}, journal={Physical Review Fluids}, author={Frei, Stefan and Burman, Erik and Johnson, Edward}, note={Article Number: 084801} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70732"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-09-04T11:48:10Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70732"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Frei, Stefan</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Attached and separated rotating flow over a finite height ridge</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Frei, Stefan</dc:creator> <dc:creator>Burman, Erik</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2024-08-02</dcterms:issued> <dc:creator>Johnson, Edward</dc:creator> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-09-04T11:48:10Z</dc:date> <dc:contributor>Johnson, Edward</dc:contributor> <dc:contributor>Burman, Erik</dc:contributor> <dcterms:abstract>This article discusses the effect of rotation on the boundary layer in high Reynolds number flow over a ridge using a numerical method based on stabilized finite elements that captures steady solutions up to a Reynolds number of order 10<sup>6</sup>. The results are validated against boundary layer computations in shallow flows and for deep flows against experimental observations reported in Machicoane et al. [Phys. Rev. Fluids 3, 034801 (2018)]. In all cases considered the boundary layer remains attached, even at arbitrarily large Reynolds numbers, provided the Rossby number of the flow is less than some critical Rossby number of order unity. At any fixed Rossby number larger than this critical value, the flow detaches at sufficiently high Reynolds number to form a steady recirculating region in the lee of the ridge. At even higher Reynolds numbers no steady flow is found. This disappearance of steady solutions closely reproduces the transition to unsteadiness seen in the laboratory.</dcterms:abstract> </rdf:Description> </rdf:RDF>