Publikation:

Motion intent recognition of individual fingers based on mechanomyogram

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Autor:innen

Ding, Huijun
He, Qing
Zeng, Lei
Zhou, Yongjin
Dan, Guo

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Pattern Recognition Letters. 2017, 88, pp. 41-48. ISSN 0167-8655. eISSN 1872-7344. Available under: doi: 10.1016/j.patrec.2017.01.012

Zusammenfassung

The mechanomyogram (MMG) signals detected from forearm muscle group contain abundant information which can be utilized to predict finger motion intention. Few works have been reported in this area especially for the recognition of individual finger motions, which however is crucial for many applications such as prosthesis control. In this paper, a MMG based finger gesture recognition system is designed to identify the motions of each finger. In this system, three kinds of feature sets, wavelet packet transform (WPT) coefficients, stationary wavelet transform (SWT) coefficients, and the time and frequency domain hybrid (TFDH) features, are adopted and processed by a support vector machine (SVM) classifier. The experimental results show that the average accuracy rates of recognition using the WPT, SWT and TFDH features are 91.64%, 94.31%, and 91.56%, respectively. Furthermore, the average rate of 95.20% can be achieved when above three feature sets are combined to use in the proposed recognition system.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DING, Huijun, Qing HE, Lei ZENG, Yongjin ZHOU, Minmin SHEN, Guo DAN, 2017. Motion intent recognition of individual fingers based on mechanomyogram. In: Pattern Recognition Letters. 2017, 88, pp. 41-48. ISSN 0167-8655. eISSN 1872-7344. Available under: doi: 10.1016/j.patrec.2017.01.012
BibTex
@article{Ding2017-03Motio-38904,
  year={2017},
  doi={10.1016/j.patrec.2017.01.012},
  title={Motion intent recognition of individual fingers based on mechanomyogram},
  volume={88},
  issn={0167-8655},
  journal={Pattern Recognition Letters},
  pages={41--48},
  author={Ding, Huijun and He, Qing and Zeng, Lei and Zhou, Yongjin and Shen, Minmin and Dan, Guo}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38904">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Motion intent recognition of individual fingers based on mechanomyogram</dcterms:title>
    <dc:contributor>Zeng, Lei</dc:contributor>
    <dc:contributor>Ding, Huijun</dc:contributor>
    <dc:creator>Zhou, Yongjin</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Dan, Guo</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-05-16T09:49:23Z</dc:date>
    <dc:contributor>Shen, Minmin</dc:contributor>
    <dc:creator>Ding, Huijun</dc:creator>
    <dc:creator>Shen, Minmin</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">The mechanomyogram (MMG) signals detected from forearm muscle group contain abundant information which can be utilized to predict finger motion intention. Few works have been reported in this area especially for the recognition of individual finger motions, which however is crucial for many applications such as prosthesis control. In this paper, a MMG based finger gesture recognition system is designed to identify the motions of each finger. In this system, three kinds of feature sets, wavelet packet transform (WPT) coefficients, stationary wavelet transform (SWT) coefficients, and the time and frequency domain hybrid (TFDH) features, are adopted and processed by a support vector machine (SVM) classifier. The experimental results show that the average accuracy rates of recognition using the WPT, SWT and TFDH features are 91.64%, 94.31%, and 91.56%, respectively. Furthermore, the average rate of 95.20% can be achieved when above three feature sets are combined to use in the proposed recognition system.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:contributor>Dan, Guo</dc:contributor>
    <dc:creator>He, Qing</dc:creator>
    <dc:contributor>He, Qing</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:contributor>Zhou, Yongjin</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-05-16T09:49:23Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2017-03</dcterms:issued>
    <dc:creator>Zeng, Lei</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38904"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen