Publikation: Motion intent recognition of individual fingers based on mechanomyogram
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The mechanomyogram (MMG) signals detected from forearm muscle group contain abundant information which can be utilized to predict finger motion intention. Few works have been reported in this area especially for the recognition of individual finger motions, which however is crucial for many applications such as prosthesis control. In this paper, a MMG based finger gesture recognition system is designed to identify the motions of each finger. In this system, three kinds of feature sets, wavelet packet transform (WPT) coefficients, stationary wavelet transform (SWT) coefficients, and the time and frequency domain hybrid (TFDH) features, are adopted and processed by a support vector machine (SVM) classifier. The experimental results show that the average accuracy rates of recognition using the WPT, SWT and TFDH features are 91.64%, 94.31%, and 91.56%, respectively. Furthermore, the average rate of 95.20% can be achieved when above three feature sets are combined to use in the proposed recognition system.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DING, Huijun, Qing HE, Lei ZENG, Yongjin ZHOU, Minmin SHEN, Guo DAN, 2017. Motion intent recognition of individual fingers based on mechanomyogram. In: Pattern Recognition Letters. 2017, 88, pp. 41-48. ISSN 0167-8655. eISSN 1872-7344. Available under: doi: 10.1016/j.patrec.2017.01.012BibTex
@article{Ding2017-03Motio-38904, year={2017}, doi={10.1016/j.patrec.2017.01.012}, title={Motion intent recognition of individual fingers based on mechanomyogram}, volume={88}, issn={0167-8655}, journal={Pattern Recognition Letters}, pages={41--48}, author={Ding, Huijun and He, Qing and Zeng, Lei and Zhou, Yongjin and Shen, Minmin and Dan, Guo} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38904"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Motion intent recognition of individual fingers based on mechanomyogram</dcterms:title> <dc:contributor>Zeng, Lei</dc:contributor> <dc:contributor>Ding, Huijun</dc:contributor> <dc:creator>Zhou, Yongjin</dc:creator> <dc:language>eng</dc:language> <dc:creator>Dan, Guo</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-05-16T09:49:23Z</dc:date> <dc:contributor>Shen, Minmin</dc:contributor> <dc:creator>Ding, Huijun</dc:creator> <dc:creator>Shen, Minmin</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">The mechanomyogram (MMG) signals detected from forearm muscle group contain abundant information which can be utilized to predict finger motion intention. Few works have been reported in this area especially for the recognition of individual finger motions, which however is crucial for many applications such as prosthesis control. In this paper, a MMG based finger gesture recognition system is designed to identify the motions of each finger. In this system, three kinds of feature sets, wavelet packet transform (WPT) coefficients, stationary wavelet transform (SWT) coefficients, and the time and frequency domain hybrid (TFDH) features, are adopted and processed by a support vector machine (SVM) classifier. The experimental results show that the average accuracy rates of recognition using the WPT, SWT and TFDH features are 91.64%, 94.31%, and 91.56%, respectively. Furthermore, the average rate of 95.20% can be achieved when above three feature sets are combined to use in the proposed recognition system.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:contributor>Dan, Guo</dc:contributor> <dc:creator>He, Qing</dc:creator> <dc:contributor>He, Qing</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:contributor>Zhou, Yongjin</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-05-16T09:49:23Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2017-03</dcterms:issued> <dc:creator>Zeng, Lei</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38904"/> </rdf:Description> </rdf:RDF>