Publikation: Physical optimization of quantum error correction circuits
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Quantum error correcting codes have been developed to protect a quantum computer from decoherence due to a noisy environment. In this paper, we present two methods for optimizing the physical implementation of such error correction schemes. First, we discuss an optimal quantum circuit implementation of the smallest error-correcting code (the three bit code). Quantum circuits are physically implemented by serial pulses, i.e. by switching on and off external parameters in the Hamiltonian one after another. In contrast to this, we introduce a new parallel switching method that allows faster gate operation by switching all external parameters simultaneously. These two methods are applied to electron spins in coupled quantum dots subject to a Heisenberg coupling H = J(t)S1 ·S2 which can generate the universal quantum gate square-root-of-swap . Using parallel pulses, the encoding for three-bit quantum error correction in a Heisenberg system can be accelerated by a factor of about two. We point out that parallel switching has potential applications for arbitrary quantum computer architectures.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BURKARD, Guido, Daniel LOSS, David P. DIVINCENZO, John A. SMOLIN, 1999. Physical optimization of quantum error correction circuits. In: Physical Review / B. 1999, 60(16), pp. 11404-11416. Available under: doi: 10.1103/PhysRevB.60.11404BibTex
@article{Burkard1999Physi-9209, year={1999}, doi={10.1103/PhysRevB.60.11404}, title={Physical optimization of quantum error correction circuits}, number={16}, volume={60}, journal={Physical Review / B}, pages={11404--11416}, author={Burkard, Guido and Loss, Daniel and DiVincenzo, David P. and Smolin, John A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/9209"> <dc:contributor>Burkard, Guido</dc:contributor> <dc:creator>DiVincenzo, David P.</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/9209"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/9209/1/9905230v1.pdf"/> <dc:contributor>DiVincenzo, David P.</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Loss, Daniel</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/9209/1/9905230v1.pdf"/> <dc:creator>Smolin, John A.</dc:creator> <dc:contributor>Smolin, John A.</dc:contributor> <dcterms:title>Physical optimization of quantum error correction circuits</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:54:35Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Loss, Daniel</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:54:35Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:bibliographicCitation>First publ. in: arXiv:cond-mat/9905230 [cond-mat.mes-hall], also publ. in: Physical Review / B 60 (1999), 16, pp. 11404-11416</dcterms:bibliographicCitation> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:format>application/pdf</dc:format> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Burkard, Guido</dc:creator> <dcterms:abstract xml:lang="eng">Quantum error correcting codes have been developed to protect a quantum computer from decoherence due to a noisy environment. In this paper, we present two methods for optimizing the physical implementation of such error correction schemes. First, we discuss an optimal quantum circuit implementation of the smallest error-correcting code (the three bit code). Quantum circuits are physically implemented by serial pulses, i.e. by switching on and off external parameters in the Hamiltonian one after another. In contrast to this, we introduce a new parallel switching method that allows faster gate operation by switching all external parameters simultaneously. These two methods are applied to electron spins in coupled quantum dots subject to a Heisenberg coupling H = J(t)S1 ·S2 which can generate the universal quantum gate square-root-of-swap . Using parallel pulses, the encoding for three-bit quantum error correction in a Heisenberg system can be accelerated by a factor of about two. We point out that parallel switching has potential applications for arbitrary quantum computer architectures.</dcterms:abstract> <dc:language>eng</dc:language> <dcterms:issued>1999</dcterms:issued> </rdf:Description> </rdf:RDF>