Publikation:

Philosophy of Mathematics

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2022

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published

Erschienen in

ZALTA, Edward N., ed.. The Stanford Encyclopedia of Philosophy. Spring 2022 Edition. Stanford, CA: Metaphysics Research Lab, Stanford University, 2022

Zusammenfassung

If mathematics is regarded as a science, then the philosophy of mathematics can be regarded as a branch of the philosophy of science, next to disciplines such as the philosophy of physics and the philosophy of biology. However, because of its subject matter, the philosophy of mathematics occupies a special place in the philosophy of science. Whereas the natural sciences investigate entities that are located in space and time, it is not at all obvious that this is also the case for the objects that are studied in mathematics. In addition to that, the methods of investigation of mathematics differ markedly from the methods of investigation in the natural sciences. Whereas the latter acquire general knowledge using inductive methods, mathematical knowledge appears to be acquired in a different way: by deduction from basic principles. The status of mathematical knowledge also appears to differ from the status of knowledge in the natural sciences. The theories of the natural sciences appear to be less certain and more open to revision than mathematical theories. For these reasons mathematics poses problems of a quite distinctive kind for philosophy. Therefore philosophers have accorded special attention to ontological and epistemological questions concerning mathematics.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
100 Philosophie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HORSTEN, Leon, 2022. Philosophy of Mathematics. In: ZALTA, Edward N., ed.. The Stanford Encyclopedia of Philosophy. Spring 2022 Edition. Stanford, CA: Metaphysics Research Lab, Stanford University, 2022
BibTex
@incollection{Horsten2022Philo-57482,
  year={2022},
  title={Philosophy of Mathematics},
  url={https://plato.stanford.edu/entries/philosophy-mathematics/},
  edition={Spring 2022 Edition},
  publisher={Metaphysics Research Lab, Stanford University},
  address={Stanford, CA},
  booktitle={The Stanford Encyclopedia of Philosophy},
  editor={Zalta, Edward N.},
  author={Horsten, Leon}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57482">
    <dcterms:issued>2022</dcterms:issued>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-05-10T09:37:30Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dcterms:title>Philosophy of Mathematics</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dc:contributor>Horsten, Leon</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-05-10T09:37:30Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57482"/>
    <dc:creator>Horsten, Leon</dc:creator>
    <dcterms:abstract xml:lang="eng">If mathematics is regarded as a science, then the philosophy of mathematics can be regarded as a branch of the philosophy of science, next to disciplines such as the philosophy of physics and the philosophy of biology. However, because of its subject matter, the philosophy of mathematics occupies a special place in the philosophy of science. Whereas the natural sciences investigate entities that are located in space and time, it is not at all obvious that this is also the case for the objects that are studied in mathematics. In addition to that, the methods of investigation of mathematics differ markedly from the methods of investigation in the natural sciences. Whereas the latter acquire general knowledge using inductive methods, mathematical knowledge appears to be acquired in a different way: by deduction from basic principles. The status of mathematical knowledge also appears to differ from the status of knowledge in the natural sciences. The theories of the natural sciences appear to be less certain and more open to revision than mathematical theories. For these reasons mathematics poses problems of a quite distinctive kind for philosophy. Therefore philosophers have accorded special attention to ontological and epistemological questions concerning mathematics.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2022-05-10

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen