Publikation: Drawing Euler diagrams with circles : the theory of piercings
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Euler diagrams are effective tools for visualizing set intersections. They have a large number of application areas ranging from statistical data analysis to software engineering. However, the automated generation of Euler diagrams has never been easy: given an abstract description of a required Euler diagram, it is computationally expensive to generate the diagram. Moreover, the generated diagrams represent sets by polygons, sometimes with quite irregular shapes that make the diagrams less comprehensible. In this paper, we address these two issues by developing the theory of piercings, where we define single piercing curves and double piercing curves. We prove that if a diagram can be built inductively by successively adding piercing curves under certain constraints, then it can be drawn with circles, which are more esthetically pleasing than arbitrary polygons. The theory of piercings is developed at the abstract level. In addition, we present a Java implementation that, given an inductively pierced abstract description, generates an Euler diagram consisting only of circles within polynomial time.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
STAPLETON, Gem, Leishi ZHANG, John HOWSE, Peter RODGERS, 2010. Drawing Euler diagrams with circles : the theory of piercings. In: IEEE Transactions on Visualization and Computer Graphics. 2010, 17(7), pp. 1020-1032. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2010.119BibTex
@article{Stapleton2010-09-08Drawi-18812, year={2010}, doi={10.1109/TVCG.2010.119}, title={Drawing Euler diagrams with circles : the theory of piercings}, number={7}, volume={17}, issn={1077-2626}, journal={IEEE Transactions on Visualization and Computer Graphics}, pages={1020--1032}, author={Stapleton, Gem and Zhang, Leishi and Howse, John and Rodgers, Peter} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/18812"> <dc:creator>Stapleton, Gem</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/18812"/> <dcterms:bibliographicCitation>First publ. in: IEEE Transactions on Visualization and Computer Graphics (TVCG) ; 17 (2011), 7. - pp. 1020-1032</dcterms:bibliographicCitation> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Howse, John</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/18812/2/stapleton_drawing%20euler.pdf"/> <dc:creator>Rodgers, Peter</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-03-20T20:35:47Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-03-20T20:35:47Z</dc:date> <dcterms:title>Drawing Euler diagrams with circles : the theory of piercings</dcterms:title> <dcterms:issued>2010-09-08</dcterms:issued> <dc:contributor>Rodgers, Peter</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/18812/2/stapleton_drawing%20euler.pdf"/> <dc:contributor>Stapleton, Gem</dc:contributor> <dc:creator>Howse, John</dc:creator> <dcterms:abstract xml:lang="eng">Euler diagrams are effective tools for visualizing set intersections. They have a large number of application areas ranging from statistical data analysis to software engineering. However, the automated generation of Euler diagrams has never been easy: given an abstract description of a required Euler diagram, it is computationally expensive to generate the diagram. Moreover, the generated diagrams represent sets by polygons, sometimes with quite irregular shapes that make the diagrams less comprehensible. In this paper, we address these two issues by developing the theory of piercings, where we define single piercing curves and double piercing curves. We prove that if a diagram can be built inductively by successively adding piercing curves under certain constraints, then it can be drawn with circles, which are more esthetically pleasing than arbitrary polygons. The theory of piercings is developed at the abstract level. In addition, we present a Java implementation that, given an inductively pierced abstract description, generates an Euler diagram consisting only of circles within polynomial time.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Zhang, Leishi</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Zhang, Leishi</dc:contributor> </rdf:Description> </rdf:RDF>