Publikation:

Asymptotic analysis of the lattice Boltzmann equation

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2005

Autor:innen

Klar, Axel
Luo, Li-Shi

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Computational Physics. 2005, 210(2), pp. 676-704. ISSN 0021-9991. eISSN 1090-2716. Available under: doi: 10.1016/j.jcp.2005.05.003

Zusammenfassung

In this article we analyze the lattice Boltzmann equation (LBE) by using the asymptotic expansion technique. We first relate the LBE to the finite discrete-velocity model (FDVM) of the Boltzmann equation with the diffusive scaling. The analysis of this model directly leads to the incompressible Navier–Stokes equations, as opposed to the compressible Navier–Stokes equations obtained by the Chapman–Enskog analysis with convective scaling. We also apply the asymptotic analysis directly to the fully discrete LBE, as opposed to the usual practice of analyzing a continuous equation obtained through the Taylor-expansion of the LBE. This leads to a consistency analysis which provides order-by-order information about the numerical solution of the LBE. The asymptotic technique enables us to analyze the structure of the leading order errors and the accuracy of numerically derived quantities, such as vorticity. It also justifies the use of Richardson’s extrapolation method. As an example, a two-dimensional Taylor-vortex flow is used to validate our analysis. The numerical results agree very well with our analytic predictions.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690JUNK, Michael, Axel KLAR, Li-Shi LUO, 2005. Asymptotic analysis of the lattice Boltzmann equation. In: Journal of Computational Physics. 2005, 210(2), pp. 676-704. ISSN 0021-9991. eISSN 1090-2716. Available under: doi: 10.1016/j.jcp.2005.05.003
BibTex
@article{Junk2005Asymp-25403,
  year={2005},
  doi={10.1016/j.jcp.2005.05.003},
  title={Asymptotic analysis of the lattice Boltzmann equation},
  number={2},
  volume={210},
  issn={0021-9991},
  journal={Journal of Computational Physics},
  pages={676--704},
  author={Junk, Michael and Klar, Axel and Luo, Li-Shi}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25403">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-11T10:52:21Z</dcterms:available>
    <dc:creator>Luo, Li-Shi</dc:creator>
    <dcterms:title>Asymptotic analysis of the lattice Boltzmann equation</dcterms:title>
    <dc:creator>Junk, Michael</dc:creator>
    <dc:contributor>Junk, Michael</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Klar, Axel</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-11T10:52:21Z</dc:date>
    <dc:contributor>Luo, Li-Shi</dc:contributor>
    <dc:creator>Klar, Axel</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2005</dcterms:issued>
    <dcterms:bibliographicCitation>Journal of Computational Physics ; 210 (2005), 2. - S. 676-704</dcterms:bibliographicCitation>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25403"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>deu</dc:language>
    <dcterms:abstract xml:lang="deu">In this article we analyze the lattice Boltzmann equation (LBE) by using the asymptotic expansion technique. We first relate the LBE to the finite discrete-velocity model (FDVM) of the Boltzmann equation with the diffusive scaling. The analysis of this model directly leads to the incompressible Navier–Stokes equations, as opposed to the compressible Navier–Stokes equations obtained by the Chapman–Enskog analysis with convective scaling. We also apply the asymptotic analysis directly to the fully discrete LBE, as opposed to the usual practice of analyzing a continuous equation obtained through the Taylor-expansion of the LBE. This leads to a consistency analysis which provides order-by-order information about the numerical solution of the LBE. The asymptotic technique enables us to analyze the structure of the leading order errors and the accuracy of numerically derived quantities, such as vorticity. It also justifies the use of Richardson’s extrapolation method. As an example, a two-dimensional Taylor-vortex flow is used to validate our analysis. The numerical results agree very well with our analytic predictions.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen