Publikation: Fitting long-memory models by generalized linear regression
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
1993
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Biometrika. 1993, 80(4), pp. 817-822. Available under: doi: 10.2307/2336873
Zusammenfassung
There is an increasing awareness of the importance of long-memory models in statistical applications. If long memory is present, it has to be taken into account in order to obtain reliable tests and confidence intervals. One obstacle to using models with long memory in routine statistical analysis has been the lack of easily available and sufficiently versatile statistical software. Here we propose a simple but flexible class of parametric models, which can be used to model such behaviour. We demonstrate that these models can be fitted by generalized linear regression. Standard statistical software packages can be used. A data example is discussed.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Fractional ARIMA, Generalized linear models, Long-range dependence, Maximum Likelihood estimation
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
BERAN, Jan, 1993. Fitting long-memory models by generalized linear regression. In: Biometrika. 1993, 80(4), pp. 817-822. Available under: doi: 10.2307/2336873BibTex
@article{Beran1993Fitti-18817, year={1993}, doi={10.2307/2336873}, title={Fitting long-memory models by generalized linear regression}, number={4}, volume={80}, journal={Biometrika}, pages={817--822}, author={Beran, Jan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/18817"> <dcterms:bibliographicCitation>Publ. in: Biometrika ; 80 (1993), 4. - S. 817-822</dcterms:bibliographicCitation> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-03-22T07:18:42Z</dcterms:available> <dcterms:abstract xml:lang="eng">There is an increasing awareness of the importance of long-memory models in statistical applications. If long memory is present, it has to be taken into account in order to obtain reliable tests and confidence intervals. One obstacle to using models with long memory in routine statistical analysis has been the lack of easily available and sufficiently versatile statistical software. Here we propose a simple but flexible class of parametric models, which can be used to model such behaviour. We demonstrate that these models can be fitted by generalized linear regression. Standard statistical software packages can be used. A data example is discussed.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/18817"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Fitting long-memory models by generalized linear regression</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Beran, Jan</dc:contributor> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Beran, Jan</dc:creator> <dcterms:issued>1993</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-03-22T07:18:42Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein