Publikation:

Collective Decision-Making and Change Detection with Bayesian Robots in Dynamic Environments

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2023

Autor:innen

Pfister, Kai

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ: IEEE, 2023, pp. 8814-8819. ISSN 2153-0858. eISSN 2153-0866. ISBN 978-1-6654-9190-7. Available under: doi: 10.1109/iros55552.2023.10341649

Zusammenfassung

Solving complex problems collectively with simple entities is a challenging task for swarm robotics. For the task of collective decision-making, robots decide based on local observations on the microscopic level to achieve consensus on the macroscopic level. We study this problem for a common benchmark of classifying distributed features in a binary dynamic environment. Our special focus is on environmental features that are dynamic as they change during the experiment. We present a control algorithm that uses sophisticated statistical change detection in combination with Bayesian robots to classify dynamic environments. The main profit is to reduce false positives allowing for improved speed and accuracy in decision-making. Supported by results from various simulated experiments, we introduce three feedback loops to balance speed and accuracy. In our benchmarks, we show the superiority of our new approach over previous works on Bayesian robots. Our approach of using change detection shows a more reliable detection of environmental changes. This enables the swarm to successfully classify even difficult environments (i.e., hard to detect differences between the binary features), while achieving faster and more accurate results in simpler environments.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

IROS 2023 : IEEE/RSJ International Conference on Intelligent Robots and Systems, 1. Okt. 2023 - 5. Okt. 2023, Detroit, MI, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690PFISTER, Kai, Heiko HAMANN, 2023. Collective Decision-Making and Change Detection with Bayesian Robots in Dynamic Environments. IROS 2023 : IEEE/RSJ International Conference on Intelligent Robots and Systems. Detroit, MI, USA, 1. Okt. 2023 - 5. Okt. 2023. In: 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ: IEEE, 2023, pp. 8814-8819. ISSN 2153-0858. eISSN 2153-0866. ISBN 978-1-6654-9190-7. Available under: doi: 10.1109/iros55552.2023.10341649
BibTex
@inproceedings{Pfister2023Colle-69597,
  year={2023},
  doi={10.1109/iros55552.2023.10341649},
  title={Collective Decision-Making and Change Detection with Bayesian Robots in Dynamic Environments},
  isbn={978-1-6654-9190-7},
  issn={2153-0858},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
  pages={8814--8819},
  author={Pfister, Kai and Hamann, Heiko}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69597">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69597"/>
    <dc:creator>Pfister, Kai</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract>Solving complex problems collectively with simple entities is a challenging task for swarm robotics. For the task of collective decision-making, robots decide based on local observations on the microscopic level to achieve consensus on the macroscopic level. We study this problem for a common benchmark of classifying distributed features in a binary dynamic environment. Our special focus is on environmental features that are dynamic as they change during the experiment. We present a control algorithm that uses sophisticated statistical change detection in combination with Bayesian robots to classify dynamic environments. The main profit is to reduce false positives allowing for improved speed and accuracy in decision-making. Supported by results from various simulated experiments, we introduce three feedback loops to balance speed and accuracy. In our benchmarks, we show the superiority of our new approach over previous works on Bayesian robots. Our approach of using change detection shows a more reliable detection of environmental changes. This enables the swarm to successfully classify even difficult environments (i.e., hard to detect differences between the binary features), while achieving faster and more accurate results in simpler environments.</dcterms:abstract>
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <dcterms:issued>2023</dcterms:issued>
    <dcterms:title>Collective Decision-Making and Change Detection with Bayesian Robots in Dynamic Environments</dcterms:title>
    <dc:contributor>Pfister, Kai</dc:contributor>
    <dc:creator>Hamann, Heiko</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-03-12T09:40:42Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-03-12T09:40:42Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen