Publikation: Collective Decision-Making and Change Detection with Bayesian Robots in Dynamic Environments
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Solving complex problems collectively with simple entities is a challenging task for swarm robotics. For the task of collective decision-making, robots decide based on local observations on the microscopic level to achieve consensus on the macroscopic level. We study this problem for a common benchmark of classifying distributed features in a binary dynamic environment. Our special focus is on environmental features that are dynamic as they change during the experiment. We present a control algorithm that uses sophisticated statistical change detection in combination with Bayesian robots to classify dynamic environments. The main profit is to reduce false positives allowing for improved speed and accuracy in decision-making. Supported by results from various simulated experiments, we introduce three feedback loops to balance speed and accuracy. In our benchmarks, we show the superiority of our new approach over previous works on Bayesian robots. Our approach of using change detection shows a more reliable detection of environmental changes. This enables the swarm to successfully classify even difficult environments (i.e., hard to detect differences between the binary features), while achieving faster and more accurate results in simpler environments.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
PFISTER, Kai, Heiko HAMANN, 2023. Collective Decision-Making and Change Detection with Bayesian Robots in Dynamic Environments. IROS 2023 : IEEE/RSJ International Conference on Intelligent Robots and Systems. Detroit, MI, USA, 1. Okt. 2023 - 5. Okt. 2023. In: 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, NJ: IEEE, 2023, pp. 8814-8819. ISSN 2153-0858. eISSN 2153-0866. ISBN 978-1-6654-9190-7. Available under: doi: 10.1109/iros55552.2023.10341649BibTex
@inproceedings{Pfister2023Colle-69597, year={2023}, doi={10.1109/iros55552.2023.10341649}, title={Collective Decision-Making and Change Detection with Bayesian Robots in Dynamic Environments}, isbn={978-1-6654-9190-7}, issn={2153-0858}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)}, pages={8814--8819}, author={Pfister, Kai and Hamann, Heiko} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69597"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69597"/> <dc:creator>Pfister, Kai</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract>Solving complex problems collectively with simple entities is a challenging task for swarm robotics. For the task of collective decision-making, robots decide based on local observations on the microscopic level to achieve consensus on the macroscopic level. We study this problem for a common benchmark of classifying distributed features in a binary dynamic environment. Our special focus is on environmental features that are dynamic as they change during the experiment. We present a control algorithm that uses sophisticated statistical change detection in combination with Bayesian robots to classify dynamic environments. The main profit is to reduce false positives allowing for improved speed and accuracy in decision-making. Supported by results from various simulated experiments, we introduce three feedback loops to balance speed and accuracy. In our benchmarks, we show the superiority of our new approach over previous works on Bayesian robots. Our approach of using change detection shows a more reliable detection of environmental changes. This enables the swarm to successfully classify even difficult environments (i.e., hard to detect differences between the binary features), while achieving faster and more accurate results in simpler environments.</dcterms:abstract> <dc:contributor>Hamann, Heiko</dc:contributor> <dcterms:issued>2023</dcterms:issued> <dcterms:title>Collective Decision-Making and Change Detection with Bayesian Robots in Dynamic Environments</dcterms:title> <dc:contributor>Pfister, Kai</dc:contributor> <dc:creator>Hamann, Heiko</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-03-12T09:40:42Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-03-12T09:40:42Z</dc:date> </rdf:Description> </rdf:RDF>