Publikation:

Kernel dependent functions in nonparametric regression with fractional time series errors

Lade...
Vorschaubild

Dateien

03-02.pdf
03-02.pdfGröße: 224.48 KBDownloads: 150

Datum

2003

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published

Erschienen in

Zusammenfassung

This paper considers estimation of the regression function and its derivatives in nonparametric regression with fractional time series errors. We focus on investigating the properties of a kernel dependent function V (delta) in the asymptotic variance and finding closed form formula of it, where delta is the long-memory parameter. - General solution of V (delta) for polynomial kernels is given together with a few examples. It is also found, e.g. that the Uniform kernel is no longer the minimum variance one by strongly antipersistent errors and that, for a fourth order kernel, V (delta) at some delta > 0 is clearly smaller than R(K). The results are used to develop a general data-driven algorithm. Data examples illustrate the practical relevance of the approach and the performance of the algorithm.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
330 Wirtschaft

Schlagwörter

Nonparametric regression, long memory, antipersistence, fractional difference, kernel dependent function, bandwidth selection

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690FENG, Yuanhua, 2003. Kernel dependent functions in nonparametric regression with fractional time series errors
BibTex
@techreport{Feng2003Kerne-11969,
  year={2003},
  series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie},
  title={Kernel dependent functions in nonparametric regression with fractional time series errors},
  number={2003/02},
  author={Feng, Yuanhua}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/11969">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:41:27Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/11969/1/03-02.pdf"/>
    <dcterms:title>Kernel dependent functions in nonparametric regression with fractional time series errors</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Feng, Yuanhua</dc:contributor>
    <dcterms:abstract xml:lang="eng">This paper considers estimation of the regression function and its derivatives in nonparametric regression with fractional time series errors. We focus on investigating the properties of a kernel dependent function V (delta) in the asymptotic variance and finding closed form formula of it, where delta is the long-memory parameter. -  General solution of V (delta) for polynomial kernels is given together with a few examples. It is also found, e.g. that the Uniform kernel is no longer the minimum variance one by strongly antipersistent errors and that, for a fourth order kernel, V (delta) at some delta &gt; 0 is clearly smaller than R(K). The results are used to develop a general data-driven algorithm. Data examples illustrate the practical relevance of the approach and the performance of the algorithm.</dcterms:abstract>
    <dc:format>application/pdf</dc:format>
    <dc:creator>Feng, Yuanhua</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/11969/1/03-02.pdf"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/11969"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:41:27Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:issued>2003</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen