Publikation:

Fast Parallel Similarity Search in Multimedia Databases

Lade...
Vorschaubild

Dateien

sigmod97_para_final_web.pdf
sigmod97_para_final_web.pdfGröße: 228.06 KBDownloads: 519

Datum

1997

Autor:innen

Berchtold, Stefan
Böhm, Christian
Braunmüller, Bernhard
Kriegel, Hans-Peter

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Proceedings of the 1997 ACM SIGMOD international conference on Management of data - SIGMOD '97. New York, New York, USA: ACM Press, 1997, pp. 1-12. ISBN 0-89791-911-4. Available under: doi: 10.1145/253260.253263

Zusammenfassung

Most similarity search techniques map the data objects into some high-dimensional feature space. The similarity search then corresponds to a nearest-neighbor search in the feature space which is computationally very intensive. In this paper, we present a new parallel method for fast nearest-neighbor search in high-dimensional feature spaces. The core problem of designing a parallel nearestneighbor algorithm is to find an adequate distribution of the data onto the disks. Unfortunately, the known declustering methods do not perform well for high-dimensional nearest-neighbor search. In contrast, our method has been optimized based on the special properties of high-dimensional spaces and therefore provides a near-optimal distribution of the data items among the disks. The basic idea of our data declustering technique is to assign the buckets corresponding to different quadrants of the data space to different disks. We show that our technique - in contrast to other declustering methods - guarantees that all buckets corresponding to neighboring quadrants are assigned to different disks. We evaluate our method using large amounts of real data (up to 40 MBytes) and compare it with the best known data declustering method, the Hilbert curve. Our experiments show that our method provides an almost linear speed-up and a constant scale-up. Additionally, it outperforms the Hilbert approach by a factor of up to 5.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

the 1997 ACM SIGMOD international conference, 11. Mai 1997 - 15. Mai 1997, Tucson, Arizona, United States
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BERCHTOLD, Stefan, Christian BÖHM, Bernhard BRAUNMÜLLER, Daniel A. KEIM, Hans-Peter KRIEGEL, 1997. Fast Parallel Similarity Search in Multimedia Databases. the 1997 ACM SIGMOD international conference. Tucson, Arizona, United States, 11. Mai 1997 - 15. Mai 1997. In: Proceedings of the 1997 ACM SIGMOD international conference on Management of data - SIGMOD '97. New York, New York, USA: ACM Press, 1997, pp. 1-12. ISBN 0-89791-911-4. Available under: doi: 10.1145/253260.253263
BibTex
@inproceedings{Berchtold1997Paral-5776,
  year={1997},
  doi={10.1145/253260.253263},
  title={Fast Parallel Similarity Search in Multimedia Databases},
  isbn={0-89791-911-4},
  publisher={ACM Press},
  address={New York, New York, USA},
  booktitle={Proceedings of the 1997 ACM SIGMOD international conference on Management of data  - SIGMOD '97},
  pages={1--12},
  author={Berchtold, Stefan and Böhm, Christian and Braunmüller, Bernhard and Keim, Daniel A. and Kriegel, Hans-Peter}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5776">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Braunmüller, Bernhard</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5776/1/sigmod97_para_final_web.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:00:02Z</dc:date>
    <dcterms:abstract xml:lang="eng">Most similarity search techniques map the data objects into some high-dimensional feature space. The similarity search then corresponds to a nearest-neighbor search in the feature space which is computationally very intensive. In this paper, we present a new parallel method for fast nearest-neighbor search in high-dimensional feature spaces. The core problem of designing a parallel nearestneighbor algorithm is to find an adequate distribution of the data onto the disks. Unfortunately, the known declustering methods do not perform well for high-dimensional nearest-neighbor search. In contrast, our method has been optimized based on the special properties of high-dimensional spaces and therefore provides a near-optimal distribution of the data items among the disks. The basic idea of our data declustering technique is to assign the buckets corresponding to different quadrants of the data space to different disks. We show that our technique - in contrast to other declustering methods - guarantees that all buckets corresponding to neighboring quadrants are assigned to different disks. We evaluate our method using large amounts of real data (up to 40 MBytes) and compare it with the best known data declustering method, the Hilbert curve. Our experiments show that our method provides an almost linear speed-up and a constant scale-up. Additionally, it outperforms the Hilbert approach by a factor of up to 5.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5776/1/sigmod97_para_final_web.pdf"/>
    <dc:contributor>Böhm, Christian</dc:contributor>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:bibliographicCitation>First publ. in: Proceedings of the 1997 ACM SIGMOD international conference on Management of data, 1997, pp. 1-12</dcterms:bibliographicCitation>
    <dc:creator>Kriegel, Hans-Peter</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dc:creator>Braunmüller, Bernhard</dc:creator>
    <dc:format>application/pdf</dc:format>
    <dc:contributor>Kriegel, Hans-Peter</dc:contributor>
    <dc:creator>Böhm, Christian</dc:creator>
    <dc:contributor>Berchtold, Stefan</dc:contributor>
    <dcterms:title>Fast Parallel Similarity Search in Multimedia Databases</dcterms:title>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5776"/>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dcterms:issued>1997</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:00:02Z</dcterms:available>
    <dc:creator>Berchtold, Stefan</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen