Publikation: Fast Parallel Similarity Search in Multimedia Databases
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Most similarity search techniques map the data objects into some high-dimensional feature space. The similarity search then corresponds to a nearest-neighbor search in the feature space which is computationally very intensive. In this paper, we present a new parallel method for fast nearest-neighbor search in high-dimensional feature spaces. The core problem of designing a parallel nearestneighbor algorithm is to find an adequate distribution of the data onto the disks. Unfortunately, the known declustering methods do not perform well for high-dimensional nearest-neighbor search. In contrast, our method has been optimized based on the special properties of high-dimensional spaces and therefore provides a near-optimal distribution of the data items among the disks. The basic idea of our data declustering technique is to assign the buckets corresponding to different quadrants of the data space to different disks. We show that our technique - in contrast to other declustering methods - guarantees that all buckets corresponding to neighboring quadrants are assigned to different disks. We evaluate our method using large amounts of real data (up to 40 MBytes) and compare it with the best known data declustering method, the Hilbert curve. Our experiments show that our method provides an almost linear speed-up and a constant scale-up. Additionally, it outperforms the Hilbert approach by a factor of up to 5.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BERCHTOLD, Stefan, Christian BÖHM, Bernhard BRAUNMÜLLER, Daniel A. KEIM, Hans-Peter KRIEGEL, 1997. Fast Parallel Similarity Search in Multimedia Databases. the 1997 ACM SIGMOD international conference. Tucson, Arizona, United States, 11. Mai 1997 - 15. Mai 1997. In: Proceedings of the 1997 ACM SIGMOD international conference on Management of data - SIGMOD '97. New York, New York, USA: ACM Press, 1997, pp. 1-12. ISBN 0-89791-911-4. Available under: doi: 10.1145/253260.253263BibTex
@inproceedings{Berchtold1997Paral-5776, year={1997}, doi={10.1145/253260.253263}, title={Fast Parallel Similarity Search in Multimedia Databases}, isbn={0-89791-911-4}, publisher={ACM Press}, address={New York, New York, USA}, booktitle={Proceedings of the 1997 ACM SIGMOD international conference on Management of data - SIGMOD '97}, pages={1--12}, author={Berchtold, Stefan and Böhm, Christian and Braunmüller, Bernhard and Keim, Daniel A. and Kriegel, Hans-Peter} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5776"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Keim, Daniel A.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Braunmüller, Bernhard</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5776/1/sigmod97_para_final_web.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:00:02Z</dc:date> <dcterms:abstract xml:lang="eng">Most similarity search techniques map the data objects into some high-dimensional feature space. The similarity search then corresponds to a nearest-neighbor search in the feature space which is computationally very intensive. In this paper, we present a new parallel method for fast nearest-neighbor search in high-dimensional feature spaces. The core problem of designing a parallel nearestneighbor algorithm is to find an adequate distribution of the data onto the disks. Unfortunately, the known declustering methods do not perform well for high-dimensional nearest-neighbor search. In contrast, our method has been optimized based on the special properties of high-dimensional spaces and therefore provides a near-optimal distribution of the data items among the disks. The basic idea of our data declustering technique is to assign the buckets corresponding to different quadrants of the data space to different disks. We show that our technique - in contrast to other declustering methods - guarantees that all buckets corresponding to neighboring quadrants are assigned to different disks. We evaluate our method using large amounts of real data (up to 40 MBytes) and compare it with the best known data declustering method, the Hilbert curve. Our experiments show that our method provides an almost linear speed-up and a constant scale-up. Additionally, it outperforms the Hilbert approach by a factor of up to 5.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5776/1/sigmod97_para_final_web.pdf"/> <dc:contributor>Böhm, Christian</dc:contributor> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:bibliographicCitation>First publ. in: Proceedings of the 1997 ACM SIGMOD international conference on Management of data, 1997, pp. 1-12</dcterms:bibliographicCitation> <dc:creator>Kriegel, Hans-Peter</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dc:creator>Braunmüller, Bernhard</dc:creator> <dc:format>application/pdf</dc:format> <dc:contributor>Kriegel, Hans-Peter</dc:contributor> <dc:creator>Böhm, Christian</dc:creator> <dc:contributor>Berchtold, Stefan</dc:contributor> <dcterms:title>Fast Parallel Similarity Search in Multimedia Databases</dcterms:title> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5776"/> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:issued>1997</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:00:02Z</dcterms:available> <dc:creator>Berchtold, Stefan</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>