Visual exploration of frequent patterns in multivariate time series

Lade...
Vorschaubild
Dateien
Hao_190757.pdf
Hao_190757.pdfGröße: 4.92 MBDownloads: 567
Datum
2012
Autor:innen
Hao, Ming
Marwah, Manish
Dayal, Umeshwar
Patnaik, Debprakash
Ramakrishnan, Naren
Sharma, Ratnesh
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Information Visualization. 2012, 11(1), pp. 71-83. ISSN 1473-8716. eISSN 1473-8724. Available under: doi: 10.1177/1473871611430769
Zusammenfassung

The detection of frequently occurring patterns, also called motifs, in data streams has been recognized as an important task. To find these motifs, we use an advanced event encoding and pattern discovery algorithm. As a large time series can contain hundreds of motifs, there is a need to support interactive analysis and exploration. In addition, for certain applications, such as data center resource management, service managers want to be able to predict the next day’s power consumption from the previous months’ data. For this purpose, we introduce four novel visual analytics methods: (i) motif layout – using colored rectangles for visualizing the occurrences and hierarchical relationships of motifs; (ii) motif distortion – enlarging or shrinking motifs for visualizing them more clearly; (iii) motif merging – combining a number of identical adjacent motif instances to simplify the display; and (iv) pattern preserving prediction – using a pattern-preserving smoothing and prediction algorithm to provide a reliable prediction for seasonal data. We have applied these methods to three real-world datasets: data center chilling utilization, oil well production, and system resource utilization. The results enable service managers to interactively examine motifs and gain new insights into the recurring patterns to analyze system operations. Using the above methods, we have also predicted both power consumption and server utilization in data centers with an accuracy of 70–80%.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690HAO, Ming, Manish MARWAH, Halldor JANETZKO, Umeshwar DAYAL, Daniel A. KEIM, Debprakash PATNAIK, Naren RAMAKRISHNAN, Ratnesh SHARMA, 2012. Visual exploration of frequent patterns in multivariate time series. In: Information Visualization. 2012, 11(1), pp. 71-83. ISSN 1473-8716. eISSN 1473-8724. Available under: doi: 10.1177/1473871611430769
BibTex
@article{Hao2012Visua-19075,
  year={2012},
  doi={10.1177/1473871611430769},
  title={Visual exploration of frequent patterns in multivariate time series},
  number={1},
  volume={11},
  issn={1473-8716},
  journal={Information Visualization},
  pages={71--83},
  author={Hao, Ming and Marwah, Manish and Janetzko, Halldor and Dayal, Umeshwar and Keim, Daniel A. and Patnaik, Debprakash and Ramakrishnan, Naren and Sharma, Ratnesh}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19075">
    <dc:creator>Dayal, Umeshwar</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19075"/>
    <dcterms:abstract xml:lang="eng">The detection of frequently occurring patterns, also called motifs, in data streams has been recognized as an important task. To find these motifs, we use an advanced event encoding and pattern discovery algorithm. As a large time series can contain hundreds of motifs, there is a need to support interactive analysis and exploration. In addition, for certain applications, such as data center resource management, service managers want to be able to predict the next day’s power consumption from the previous months’ data. For this purpose, we introduce four novel visual analytics methods: (i) motif layout – using colored rectangles for visualizing the occurrences and hierarchical relationships of motifs; (ii) motif distortion – enlarging or shrinking motifs for visualizing them more clearly; (iii) motif merging – combining a number of identical adjacent motif instances to simplify the display; and (iv) pattern preserving prediction – using a pattern-preserving smoothing and prediction algorithm to provide a reliable prediction for seasonal data. We have applied these methods to three real-world datasets: data center chilling utilization, oil well production, and system resource utilization. The results enable service managers to interactively examine motifs and gain new insights into the recurring patterns to analyze system operations. Using the above methods, we have also predicted both power consumption and server utilization in data centers with an accuracy of 70–80%.</dcterms:abstract>
    <dc:contributor>Marwah, Manish</dc:contributor>
    <dc:creator>Janetzko, Halldor</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-04-19T08:28:40Z</dcterms:available>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19075/2/Hao_190757.pdf"/>
    <dc:contributor>Dayal, Umeshwar</dc:contributor>
    <dcterms:bibliographicCitation>Information Visualization ; 11 (2012), 1. - S. 71-83</dcterms:bibliographicCitation>
    <dc:contributor>Janetzko, Halldor</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Hao, Ming</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Visual exploration of frequent patterns in multivariate time series</dcterms:title>
    <dc:creator>Hao, Ming</dc:creator>
    <dc:contributor>Sharma, Ratnesh</dc:contributor>
    <dc:creator>Sharma, Ratnesh</dc:creator>
    <dc:contributor>Ramakrishnan, Naren</dc:contributor>
    <dc:creator>Patnaik, Debprakash</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Ramakrishnan, Naren</dc:creator>
    <dc:creator>Marwah, Manish</dc:creator>
    <dcterms:issued>2012</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-04-19T08:28:40Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Patnaik, Debprakash</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/19075/2/Hao_190757.pdf"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen