Publikation:

Matrix-Based Visual Correlation Analysis on Large Timeseries Data

Lade...
Vorschaubild

Dateien

Behrisch_225306.pdf
Behrisch_225306.pdfGröße: 1.59 MBDownloads: 441

Datum

2012

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2012 IEEE Conference on Visual Analytics Science and Technology (VAST). IEEE, 2012, pp. 209-210. ISBN 978-1-4673-4752-5. Available under: doi: 10.1109/VAST.2012.6400549

Zusammenfassung

In recent years, the quantity of time series data generated in a wide variety of domains grown consistently. Thus, it is difficult for analysts to process and understand this overwhelming amount of data. In the specific case of time series data another problem arises: time series can be highly interrelated. This problem becomes even more challenging when a set of parameters influences the progression of a time series. However, while most visual analysis techniques support the analysis of short time periods, e.g. one day or one week, they fail to visualize large-scale time series, ranging over one year or more. In our approach we present a time series matrix visualization that tackles this problem. Its primary advantages are that it scales to a large number of time series with different start and end points and allows for the visual comparison / correlation analysis of a set of influencing factors. To evaluate our approach, we applied our technique to a real-world data set, showing the impact of local weather conditions on the efficiency of photovoltaic power plants.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

2012 IEEE Conference on Visual Analytics Science and Technology (VAST), 14. Okt. 2012 - 19. Okt. 2012, Seattle, WA, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BEHRISCH, Michael, James DAVEY, Tobias SCHRECK, Daniel A. KEIM, Jörn KOHLHAMMER, 2012. Matrix-Based Visual Correlation Analysis on Large Timeseries Data. 2012 IEEE Conference on Visual Analytics Science and Technology (VAST). Seattle, WA, USA, 14. Okt. 2012 - 19. Okt. 2012. In: 2012 IEEE Conference on Visual Analytics Science and Technology (VAST). IEEE, 2012, pp. 209-210. ISBN 978-1-4673-4752-5. Available under: doi: 10.1109/VAST.2012.6400549
BibTex
@inproceedings{Behrisch2012-10Matri-22530,
  year={2012},
  doi={10.1109/VAST.2012.6400549},
  title={Matrix-Based Visual Correlation Analysis on Large Timeseries Data},
  isbn={978-1-4673-4752-5},
  publisher={IEEE},
  booktitle={2012 IEEE Conference on Visual Analytics Science and Technology (VAST)},
  pages={209--210},
  author={Behrisch, Michael and Davey, James and Schreck, Tobias and Keim, Daniel A. and Kohlhammer, Jörn}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22530">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">In recent years, the quantity of time series data generated in a wide variety of domains grown consistently. Thus, it is difficult for analysts to process and understand this overwhelming amount of data. In the specific case of time series data another problem arises: time series can be highly interrelated. This problem becomes even more challenging when a set of parameters influences the progression of a time series. However, while most visual analysis techniques support the analysis of short time periods, e.g. one day or one week, they fail to visualize large-scale time series, ranging over one year or more. In our approach we present a time series matrix visualization that tackles this problem. Its primary advantages are that it scales to a large number of time series with different start and end points and allows for the visual comparison / correlation analysis of a set of influencing factors. To evaluate our approach, we applied our technique to a real-world data set, showing the impact of local weather conditions on the efficiency of photovoltaic power plants.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dcterms:bibliographicCitation>IEEE Conference on Visual Analytics Science &amp; Technology 2012 : Seattle, Washington, USA, 14 - 19 October 2012 ; Proceedings / Giuseppe Santucci and Matthew Ward (eds.). - Piscataway, NJ : IEEE, 2012, S. 209-210. - ISBN 978-1-4673-4753-2</dcterms:bibliographicCitation>
    <dcterms:title>Matrix-Based Visual Correlation Analysis on Large Timeseries Data</dcterms:title>
    <dc:contributor>Kohlhammer, Jörn</dc:contributor>
    <dc:contributor>Davey, James</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-03-25T10:52:39Z</dcterms:available>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Kohlhammer, Jörn</dc:creator>
    <dc:creator>Behrisch, Michael</dc:creator>
    <dc:contributor>Behrisch, Michael</dc:contributor>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-03-25T10:52:39Z</dc:date>
    <dcterms:issued>2012-10</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22530/2/Behrisch_225306.pdf"/>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Davey, James</dc:creator>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22530/2/Behrisch_225306.pdf"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22530"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen