Publikation: Equivariant Poincaré–Alexander–Lefschetz duality and the Cohen–Macaulay property
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2014
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Algebraic & Geometric Topology. 2014, 14(3), pp. 1339-1375. ISSN 1472-2747. eISSN 1472-2739. Available under: doi: 10.2140/agt.2014.14.1339
Zusammenfassung
We prove a Poincaré–Alexander–Lefschetz duality theorem for rational torus-equivariant cohomology and rational homology manifolds. We allow non-compact and non-orientable spaces. We use this to deduce certain short exact sequences in equivariant cohomology, originally due to Duflot in the differentiable case, from similar, but more general short exact sequences in equivariant homology. A crucial role is played by the Cohen–Macaulayness of relative equivariant cohomology modules arising from the orbit filtration.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
torus actions, homology manifolds, equivariant homology, equivariant cohomology, Atiyah–Bredon complex, Poincaré–Alexander–Lefschetz duality, Cohen–Macaulay modules
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
ALLDAY, Christopher, Matthias FRANZ, Volker PUPPE, 2014. Equivariant Poincaré–Alexander–Lefschetz duality and the Cohen–Macaulay property. In: Algebraic & Geometric Topology. 2014, 14(3), pp. 1339-1375. ISSN 1472-2747. eISSN 1472-2739. Available under: doi: 10.2140/agt.2014.14.1339BibTex
@article{Allday2014Equiv-30162, year={2014}, doi={10.2140/agt.2014.14.1339}, title={Equivariant Poincaré–Alexander–Lefschetz duality and the Cohen–Macaulay property}, number={3}, volume={14}, issn={1472-2747}, journal={Algebraic & Geometric Topology}, pages={1339--1375}, author={Allday, Christopher and Franz, Matthias and Puppe, Volker} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30162"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30162"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">We prove a Poincaré–Alexander–Lefschetz duality theorem for rational torus-equivariant cohomology and rational homology manifolds. We allow non-compact and non-orientable spaces. We use this to deduce certain short exact sequences in equivariant cohomology, originally due to Duflot in the differentiable case, from similar, but more general short exact sequences in equivariant homology. A crucial role is played by the Cohen–Macaulayness of relative equivariant cohomology modules arising from the orbit filtration.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-04T16:02:08Z</dc:date> <dc:contributor>Franz, Matthias</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-04T16:02:08Z</dcterms:available> <dc:contributor>Puppe, Volker</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Allday, Christopher</dc:creator> <dc:language>eng</dc:language> <dcterms:issued>2014</dcterms:issued> <dc:contributor>Allday, Christopher</dc:contributor> <dc:creator>Puppe, Volker</dc:creator> <dcterms:title>Equivariant Poincaré–Alexander–Lefschetz duality and the Cohen–Macaulay property</dcterms:title> <dc:creator>Franz, Matthias</dc:creator> </rdf:Description> </rdf:RDF>