Publikation:

Equivariant Poincaré–Alexander–Lefschetz duality and the Cohen–Macaulay property

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2014

Autor:innen

Allday, Christopher
Franz, Matthias

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Algebraic & Geometric Topology. 2014, 14(3), pp. 1339-1375. ISSN 1472-2747. eISSN 1472-2739. Available under: doi: 10.2140/agt.2014.14.1339

Zusammenfassung

We prove a Poincaré–Alexander–Lefschetz duality theorem for rational torus-equivariant cohomology and rational homology manifolds. We allow non-compact and non-orientable spaces. We use this to deduce certain short exact sequences in equivariant cohomology, originally due to Duflot in the differentiable case, from similar, but more general short exact sequences in equivariant homology. A crucial role is played by the Cohen–Macaulayness of relative equivariant cohomology modules arising from the orbit filtration.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

torus actions, homology manifolds, equivariant homology, equivariant cohomology, Atiyah–Bredon complex, Poincaré–Alexander–Lefschetz duality, Cohen–Macaulay modules

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ALLDAY, Christopher, Matthias FRANZ, Volker PUPPE, 2014. Equivariant Poincaré–Alexander–Lefschetz duality and the Cohen–Macaulay property. In: Algebraic & Geometric Topology. 2014, 14(3), pp. 1339-1375. ISSN 1472-2747. eISSN 1472-2739. Available under: doi: 10.2140/agt.2014.14.1339
BibTex
@article{Allday2014Equiv-30162,
  year={2014},
  doi={10.2140/agt.2014.14.1339},
  title={Equivariant Poincaré–Alexander–Lefschetz duality and the Cohen–Macaulay property},
  number={3},
  volume={14},
  issn={1472-2747},
  journal={Algebraic & Geometric Topology},
  pages={1339--1375},
  author={Allday, Christopher and Franz, Matthias and Puppe, Volker}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30162">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30162"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">We prove a Poincaré–Alexander–Lefschetz duality theorem for rational torus-equivariant cohomology and rational homology manifolds. We allow non-compact and non-orientable spaces. We use this to deduce certain short exact sequences in equivariant cohomology, originally due to Duflot in the differentiable case, from similar, but more general short exact sequences in equivariant homology. A crucial role is played by the Cohen–Macaulayness of relative equivariant cohomology modules arising from the orbit filtration.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-04T16:02:08Z</dc:date>
    <dc:contributor>Franz, Matthias</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-04T16:02:08Z</dcterms:available>
    <dc:contributor>Puppe, Volker</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Allday, Christopher</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:issued>2014</dcterms:issued>
    <dc:contributor>Allday, Christopher</dc:contributor>
    <dc:creator>Puppe, Volker</dc:creator>
    <dcterms:title>Equivariant Poincaré–Alexander–Lefschetz duality and the Cohen–Macaulay property</dcterms:title>
    <dc:creator>Franz, Matthias</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen