Publikation:

Visual analysis of spatio-temporal data : Applications in weather forecasting

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2015

Autor:innen

Diehl, Alexandra
Pelorosso, Leandro
Delrieux, Claudio
Saulo, Celeste
Ruiz, Juan
Gröller, M. Eduard
Bruckner, Stefan

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Computer Graphics Forum. 2015, 34(3), pp. 381-390. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.12650

Zusammenfassung

Weather conditions affect multiple aspects of human life such as economy, safety, security, and social activities. For this reason, weather forecast plays a major role in society. Currently weather forecasts are based on Numerical Weather Prediction (NWP) models that generate a representation of the atmospheric flow. Interactive visualization of geo‐spatial data has been widely used in order to facilitate the analysis of NWP models. This paper presents a visualization system for the analysis of spatio‐temporal patterns in short‐term weather forecasts. For this purpose, we provide an interactive visualization interface that guides users from simple visual overviews to more advanced visualization techniques. Our solution presents multiple views that include a timeline with geo‐referenced maps, an integrated webmap view, a forecast operation tool, a curve‐pattern selector, spatial filters, and a linked meteogram. Two key contributions of this work are the timeline with geo‐referenced maps and the curve‐pattern selector. The latter provides novel functionality that allows users to specify and search for meaningful patterns in the data. The visual interface of our solution allows users to detect both possible weather trends and errors in the weather forecast model. We illustrate the usage of our solution with a series of case studies that were designed and validated in collaboration with domain experts.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DIEHL, Alexandra, Leandro PELOROSSO, Claudio DELRIEUX, Celeste SAULO, Juan RUIZ, M. Eduard GRÖLLER, Stefan BRUCKNER, 2015. Visual analysis of spatio-temporal data : Applications in weather forecasting. In: Computer Graphics Forum. 2015, 34(3), pp. 381-390. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.12650
BibTex
@article{Diehl2015Visua-45092,
  year={2015},
  doi={10.1111/cgf.12650},
  title={Visual analysis of spatio-temporal data : Applications in weather forecasting},
  number={3},
  volume={34},
  issn={0167-7055},
  journal={Computer Graphics Forum},
  pages={381--390},
  author={Diehl, Alexandra and Pelorosso, Leandro and Delrieux, Claudio and Saulo, Celeste and Ruiz, Juan and Gröller, M. Eduard and Bruckner, Stefan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45092">
    <dc:creator>Delrieux, Claudio</dc:creator>
    <dc:creator>Bruckner, Stefan</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-19T11:58:26Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45092"/>
    <dc:creator>Pelorosso, Leandro</dc:creator>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-19T11:58:26Z</dc:date>
    <dc:contributor>Gröller, M. Eduard</dc:contributor>
    <dc:creator>Ruiz, Juan</dc:creator>
    <dc:contributor>Diehl, Alexandra</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Gröller, M. Eduard</dc:creator>
    <dc:contributor>Ruiz, Juan</dc:contributor>
    <dc:contributor>Pelorosso, Leandro</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Visual analysis of spatio-temporal data : Applications in weather forecasting</dcterms:title>
    <dc:creator>Saulo, Celeste</dc:creator>
    <dc:creator>Diehl, Alexandra</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Saulo, Celeste</dc:contributor>
    <dc:contributor>Delrieux, Claudio</dc:contributor>
    <dcterms:abstract xml:lang="eng">Weather conditions affect multiple aspects of human life such as economy, safety, security, and social activities. For this reason, weather forecast plays a major role in society. Currently weather forecasts are based on Numerical Weather Prediction (NWP) models that generate a representation of the atmospheric flow. Interactive visualization of geo‐spatial data has been widely used in order to facilitate the analysis of NWP models. This paper presents a visualization system for the analysis of spatio‐temporal patterns in short‐term weather forecasts. For this purpose, we provide an interactive visualization interface that guides users from simple visual overviews to more advanced visualization techniques. Our solution presents multiple views that include a timeline with geo‐referenced maps, an integrated webmap view, a forecast operation tool, a curve‐pattern selector, spatial filters, and a linked meteogram. Two key contributions of this work are the timeline with geo‐referenced maps and the curve‐pattern selector. The latter provides novel functionality that allows users to specify and search for meaningful patterns in the data. The visual interface of our solution allows users to detect both possible weather trends and errors in the weather forecast model. We illustrate the usage of our solution with a series of case studies that were designed and validated in collaboration with domain experts.</dcterms:abstract>
    <dc:contributor>Bruckner, Stefan</dc:contributor>
    <dcterms:issued>2015</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen