Publikation: Visual analysis of spatio-temporal data : Applications in weather forecasting
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Weather conditions affect multiple aspects of human life such as economy, safety, security, and social activities. For this reason, weather forecast plays a major role in society. Currently weather forecasts are based on Numerical Weather Prediction (NWP) models that generate a representation of the atmospheric flow. Interactive visualization of geo‐spatial data has been widely used in order to facilitate the analysis of NWP models. This paper presents a visualization system for the analysis of spatio‐temporal patterns in short‐term weather forecasts. For this purpose, we provide an interactive visualization interface that guides users from simple visual overviews to more advanced visualization techniques. Our solution presents multiple views that include a timeline with geo‐referenced maps, an integrated webmap view, a forecast operation tool, a curve‐pattern selector, spatial filters, and a linked meteogram. Two key contributions of this work are the timeline with geo‐referenced maps and the curve‐pattern selector. The latter provides novel functionality that allows users to specify and search for meaningful patterns in the data. The visual interface of our solution allows users to detect both possible weather trends and errors in the weather forecast model. We illustrate the usage of our solution with a series of case studies that were designed and validated in collaboration with domain experts.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DIEHL, Alexandra, Leandro PELOROSSO, Claudio DELRIEUX, Celeste SAULO, Juan RUIZ, M. Eduard GRÖLLER, Stefan BRUCKNER, 2015. Visual analysis of spatio-temporal data : Applications in weather forecasting. In: Computer Graphics Forum. 2015, 34(3), pp. 381-390. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.12650BibTex
@article{Diehl2015Visua-45092, year={2015}, doi={10.1111/cgf.12650}, title={Visual analysis of spatio-temporal data : Applications in weather forecasting}, number={3}, volume={34}, issn={0167-7055}, journal={Computer Graphics Forum}, pages={381--390}, author={Diehl, Alexandra and Pelorosso, Leandro and Delrieux, Claudio and Saulo, Celeste and Ruiz, Juan and Gröller, M. Eduard and Bruckner, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45092"> <dc:creator>Delrieux, Claudio</dc:creator> <dc:creator>Bruckner, Stefan</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-19T11:58:26Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45092"/> <dc:creator>Pelorosso, Leandro</dc:creator> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-19T11:58:26Z</dc:date> <dc:contributor>Gröller, M. Eduard</dc:contributor> <dc:creator>Ruiz, Juan</dc:creator> <dc:contributor>Diehl, Alexandra</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Gröller, M. Eduard</dc:creator> <dc:contributor>Ruiz, Juan</dc:contributor> <dc:contributor>Pelorosso, Leandro</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Visual analysis of spatio-temporal data : Applications in weather forecasting</dcterms:title> <dc:creator>Saulo, Celeste</dc:creator> <dc:creator>Diehl, Alexandra</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Saulo, Celeste</dc:contributor> <dc:contributor>Delrieux, Claudio</dc:contributor> <dcterms:abstract xml:lang="eng">Weather conditions affect multiple aspects of human life such as economy, safety, security, and social activities. For this reason, weather forecast plays a major role in society. Currently weather forecasts are based on Numerical Weather Prediction (NWP) models that generate a representation of the atmospheric flow. Interactive visualization of geo‐spatial data has been widely used in order to facilitate the analysis of NWP models. This paper presents a visualization system for the analysis of spatio‐temporal patterns in short‐term weather forecasts. For this purpose, we provide an interactive visualization interface that guides users from simple visual overviews to more advanced visualization techniques. Our solution presents multiple views that include a timeline with geo‐referenced maps, an integrated webmap view, a forecast operation tool, a curve‐pattern selector, spatial filters, and a linked meteogram. Two key contributions of this work are the timeline with geo‐referenced maps and the curve‐pattern selector. The latter provides novel functionality that allows users to specify and search for meaningful patterns in the data. The visual interface of our solution allows users to detect both possible weather trends and errors in the weather forecast model. We illustrate the usage of our solution with a series of case studies that were designed and validated in collaboration with domain experts.</dcterms:abstract> <dc:contributor>Bruckner, Stefan</dc:contributor> <dcterms:issued>2015</dcterms:issued> </rdf:Description> </rdf:RDF>