Publikation:

Big-Data and Machine Learning to Revamp Computational Toxicology and its Use in Risk Assessment

Lade...
Vorschaubild

Dateien

Luechtefeld_2-1ivbsukfdkqc47.pdf
Luechtefeld_2-1ivbsukfdkqc47.pdfGröße: 192.44 KBDownloads: 279

Datum

2018

Autor:innen

Luechtefeld, Thomas
Rowlands, Craig

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

European Union (EU): 681002

Projekt

EUToxRisk21
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Toxicology Research. 2018, 7(5), pp. 732-744. ISSN 2045-452X. eISSN 2045-4538. Available under: doi: 10.1039/C8TX00051D

Zusammenfassung

The creation of large toxicological databases and advances in machine-learning techniques have empowered computational approaches in toxicology. Work with these large databases based on regulatory data has allowed reproducibility assessment of animal models, which highlight weaknesses in traditional in vivo methods. This should lower the bars for the introduction of new approaches and represents a benchmark what is achievable for any alternative method validated against these methods. Quantitative Structure Activity Relationships (QSAR) models for skin sensitization, eye irritation, and other human health hazards based on these big databases, however, also have made apparent some of the challenges facing computational modeling, including validation challenges, model interpretation issues, and model selection issues. A first implementation of machine learning-based predictions termed REACHacross achieved unprecedented sensitivities of >80% with specificities >70% in predicting the six most common acute and topical hazards covering about two thirds of the chemical universe. While this is awaiting formal validation, it demonstrates the new quality introduced by big data and modern data-mining technologies. The rapid increase in the diversity and number of computational models, as well as the data they are based on, create challenges and opportunities for the use of computational methods.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LUECHTEFELD, Thomas, Craig ROWLANDS, Thomas HARTUNG, 2018. Big-Data and Machine Learning to Revamp Computational Toxicology and its Use in Risk Assessment. In: Toxicology Research. 2018, 7(5), pp. 732-744. ISSN 2045-452X. eISSN 2045-4538. Available under: doi: 10.1039/C8TX00051D
BibTex
@article{Luechtefeld2018BigDa-42268,
  year={2018},
  doi={10.1039/C8TX00051D},
  title={Big-Data and Machine Learning to Revamp Computational Toxicology and its Use in Risk Assessment},
  number={5},
  volume={7},
  issn={2045-452X},
  journal={Toxicology Research},
  pages={732--744},
  author={Luechtefeld, Thomas and Rowlands, Craig and Hartung, Thomas}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42268">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42268/1/Luechtefeld_2-1ivbsukfdkqc47.pdf"/>
    <dc:creator>Rowlands, Craig</dc:creator>
    <dcterms:issued>2018</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Luechtefeld, Thomas</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Big-Data and Machine Learning to Revamp Computational Toxicology and its Use in Risk Assessment</dcterms:title>
    <dc:contributor>Luechtefeld, Thomas</dc:contributor>
    <dc:contributor>Hartung, Thomas</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-08T13:46:55Z</dcterms:available>
    <dc:contributor>Rowlands, Craig</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42268"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-05-08T13:46:55Z</dc:date>
    <dc:creator>Hartung, Thomas</dc:creator>
    <dcterms:abstract xml:lang="eng">The creation of large toxicological databases and advances in machine-learning techniques have empowered computational approaches in toxicology. Work with these large databases based on regulatory data has allowed reproducibility assessment of animal models, which highlight weaknesses in traditional in vivo methods. This should lower the bars for the introduction of new approaches and represents a benchmark what is achievable for any alternative method validated against these methods. Quantitative Structure Activity Relationships (QSAR) models for skin sensitization, eye irritation, and other human health hazards based on these big databases, however, also have made apparent some of the challenges facing computational modeling, including validation challenges, model interpretation issues, and model selection issues. A first implementation of machine learning-based predictions termed REACHacross achieved unprecedented sensitivities of &gt;80% with specificities &gt;70% in predicting the six most common acute and topical hazards covering about two thirds of the chemical universe. While this is awaiting formal validation, it demonstrates the new quality introduced by big data and modern data-mining technologies. The rapid increase in the diversity and number of computational models, as well as the data they are based on, create challenges and opportunities for the use of computational methods.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42268/1/Luechtefeld_2-1ivbsukfdkqc47.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen