Publikation:

An extended exponential SEMIFAR model with application in R

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2024

Autor:innen

Letmathe, Sebastian

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Communications in Statistics: Theory and Methods. Taylor & Francis. 2024, 53(22), S. 7914-7926. ISSN 0361-0926. eISSN 1532-415X. Verfügbar unter: doi: 10.1080/03610926.2023.2276049

Zusammenfassung

The article at hand provides a detailed description of the esemifar R-package, which is an extension of the already published smoots R-package, enabling the data-driven local-polynomial smoothing of trend-stationary time series with long memory. In this regard, a simple data-driven algorithm is proposed based on the well-known iterative plug-in algorithm for SEMIFAR (semiparametric fractional autoregressive) models. Two new functions for data-driven estimation of the trend and its derivatives in the presence of long memory are introduced. esemifar is applied to various environmental and financial time series with long memory, for example, mean monthly Northern Hemisphere temperature changes, daily observations of the air quality index of London (Britain), quarterly G7-GDP and daily trading volume of the S & P500. It is worth mentioning that this package can be applied to any suitable time series.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LETMATHE, Sebastian, Jan BERAN, Yuanhua FENG, 2024. An extended exponential SEMIFAR model with application in R. In: Communications in Statistics: Theory and Methods. Taylor & Francis. 2024, 53(22), S. 7914-7926. ISSN 0361-0926. eISSN 1532-415X. Verfügbar unter: doi: 10.1080/03610926.2023.2276049
BibTex
@article{Letmathe2024-11-16exten-68724,
  year={2024},
  doi={10.1080/03610926.2023.2276049},
  title={An extended exponential SEMIFAR model with application in R},
  number={22},
  volume={53},
  issn={0361-0926},
  journal={Communications in Statistics: Theory and Methods},
  pages={7914--7926},
  author={Letmathe, Sebastian and Beran, Jan and Feng, Yuanhua}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68724">
    <dc:contributor>Feng, Yuanhua</dc:contributor>
    <dcterms:abstract>The article at hand provides a detailed description of the esemifar R-package, which is an extension of the already published smoots R-package, enabling the data-driven local-polynomial smoothing of trend-stationary time series with long memory. In this regard, a simple data-driven algorithm is proposed based on the well-known iterative plug-in algorithm for SEMIFAR (semiparametric fractional autoregressive) models. Two new functions for data-driven estimation of the trend and its derivatives in the presence of long memory are introduced. esemifar is applied to various environmental and financial time series with long memory, for example, mean monthly Northern Hemisphere temperature changes, daily observations of the air quality index of London (Britain), quarterly G7-GDP and daily trading volume of the S &amp; P500. It is worth mentioning that this package can be applied to any suitable time series.</dcterms:abstract>
    <dc:creator>Letmathe, Sebastian</dc:creator>
    <dc:contributor>Beran, Jan</dc:contributor>
    <dc:creator>Feng, Yuanhua</dc:creator>
    <dc:creator>Beran, Jan</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-12-13T13:15:03Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Letmathe, Sebastian</dc:contributor>
    <dcterms:issued>2024-11-16</dcterms:issued>
    <dcterms:title>An extended exponential SEMIFAR model with application in R</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-12-13T13:15:03Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68724"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen