Publikation: Mining mathematical documents for question answering via unsupervised formula labeling
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The increasing number of questions on Question Answering (QA) platforms like Math Stack Exchange (MSE) signifies a growing information need to answer math-related questions. However, there is currently very little research on approaches for an open data QA system that retrieves mathematical formulae using their concept names or querying formula identifier relationships from knowledge graphs. In this paper, we aim to bridge the gap by presenting data mining methods and benchmark results to employ Mathematical Entity Linking (MathEL) and Unsupervised Formula Labeling (UFL) for semantic formula search and mathematical question answering (MathQA) on the arXiv preprint repository, Wikipedia, and Wikidata. The new methods extend our previously introduced system, which is part of the Wikimedia ecosystem of free knowledge. Based on different types of information needs, we evaluate our system in 15 information need modes, assessing over 7,000 query results. Furthermore, we compare its performance to a commercial knowledge-base and calculation-engine (Wolfram Alpha) and search-engine (Google). The open source system is hosted by Wiki-media at https://mathqa.wmflabs.org. A demovideo is available at purl.org/mathqa.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SCHARPF, Philipp, Moritz SCHUBOTZ, Bela GIPP, 2022. Mining mathematical documents for question answering via unsupervised formula labeling. Joint Conference on Digital Libraries, JCDL '22. Cologne, Germany and Online (Hybrid), 20. Juni 2022 - 24. Juni 2022. In: AIZAWA, Akiko, ed. and others. JCDL '22 : Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2022. New York: ACM, 2022, 19. ISBN 978-1-4503-9345-4. Available under: doi: 10.1145/3529372.3530925BibTex
@inproceedings{Scharpf2022Minin-59116, year={2022}, doi={10.1145/3529372.3530925}, title={Mining mathematical documents for question answering via unsupervised formula labeling}, isbn={978-1-4503-9345-4}, publisher={ACM}, address={New York}, booktitle={JCDL '22 : Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2022}, editor={Aizawa, Akiko}, author={Scharpf, Philipp and Schubotz, Moritz and Gipp, Bela}, note={Article Number: 19} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59116"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59116/1/Scharpf_2-1ied3kpi6snmb6.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Scharpf, Philipp</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:creator>Gipp, Bela</dc:creator> <dc:contributor>Gipp, Bela</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Mining mathematical documents for question answering via unsupervised formula labeling</dcterms:title> <dc:language>eng</dc:language> <dc:creator>Scharpf, Philipp</dc:creator> <dc:contributor>Schubotz, Moritz</dc:contributor> <dcterms:abstract xml:lang="eng">The increasing number of questions on Question Answering (QA) platforms like Math Stack Exchange (MSE) signifies a growing information need to answer math-related questions. However, there is currently very little research on approaches for an open data QA system that retrieves mathematical formulae using their concept names or querying formula identifier relationships from knowledge graphs. In this paper, we aim to bridge the gap by presenting data mining methods and benchmark results to employ Mathematical Entity Linking (MathEL) and Unsupervised Formula Labeling (UFL) for semantic formula search and mathematical question answering (MathQA) on the arXiv preprint repository, Wikipedia, and Wikidata. The new methods extend our previously introduced system, which is part of the Wikimedia ecosystem of free knowledge. Based on different types of information needs, we evaluate our system in 15 information need modes, assessing over 7,000 query results. Furthermore, we compare its performance to a commercial knowledge-base and calculation-engine (Wolfram Alpha) and search-engine (Google). The open source system is hosted by Wiki-media at https://mathqa.wmflabs.org. A demovideo is available at purl.org/mathqa.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-11T08:18:40Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59116"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Schubotz, Moritz</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-11T08:18:40Z</dc:date> <dcterms:issued>2022</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59116/1/Scharpf_2-1ied3kpi6snmb6.pdf"/> </rdf:Description> </rdf:RDF>