Publikation:

Mining mathematical documents for question answering via unsupervised formula labeling

Lade...
Vorschaubild

Dateien

Scharpf_2-1ied3kpi6snmb6.pdf
Scharpf_2-1ied3kpi6snmb6.pdfGröße: 461.7 KBDownloads: 68

Datum

2022

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

AIZAWA, Akiko, ed. and others. JCDL '22 : Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2022. New York: ACM, 2022, 19. ISBN 978-1-4503-9345-4. Available under: doi: 10.1145/3529372.3530925

Zusammenfassung

The increasing number of questions on Question Answering (QA) platforms like Math Stack Exchange (MSE) signifies a growing information need to answer math-related questions. However, there is currently very little research on approaches for an open data QA system that retrieves mathematical formulae using their concept names or querying formula identifier relationships from knowledge graphs. In this paper, we aim to bridge the gap by presenting data mining methods and benchmark results to employ Mathematical Entity Linking (MathEL) and Unsupervised Formula Labeling (UFL) for semantic formula search and mathematical question answering (MathQA) on the arXiv preprint repository, Wikipedia, and Wikidata. The new methods extend our previously introduced system, which is part of the Wikimedia ecosystem of free knowledge. Based on different types of information needs, we evaluate our system in 15 information need modes, assessing over 7,000 query results. Furthermore, we compare its performance to a commercial knowledge-base and calculation-engine (Wolfram Alpha) and search-engine (Google). The open source system is hosted by Wiki-media at https://mathqa.wmflabs.org. A demovideo is available at purl.org/mathqa.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Joint Conference on Digital Libraries, JCDL '22, 20. Juni 2022 - 24. Juni 2022, Cologne, Germany and Online (Hybrid)
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SCHARPF, Philipp, Moritz SCHUBOTZ, Bela GIPP, 2022. Mining mathematical documents for question answering via unsupervised formula labeling. Joint Conference on Digital Libraries, JCDL '22. Cologne, Germany and Online (Hybrid), 20. Juni 2022 - 24. Juni 2022. In: AIZAWA, Akiko, ed. and others. JCDL '22 : Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2022. New York: ACM, 2022, 19. ISBN 978-1-4503-9345-4. Available under: doi: 10.1145/3529372.3530925
BibTex
@inproceedings{Scharpf2022Minin-59116,
  year={2022},
  doi={10.1145/3529372.3530925},
  title={Mining mathematical documents for question answering via unsupervised formula labeling},
  isbn={978-1-4503-9345-4},
  publisher={ACM},
  address={New York},
  booktitle={JCDL '22 : Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2022},
  editor={Aizawa, Akiko},
  author={Scharpf, Philipp and Schubotz, Moritz and Gipp, Bela},
  note={Article Number: 19}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59116">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59116/1/Scharpf_2-1ied3kpi6snmb6.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Scharpf, Philipp</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Gipp, Bela</dc:creator>
    <dc:contributor>Gipp, Bela</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Mining mathematical documents for question answering via unsupervised formula labeling</dcterms:title>
    <dc:language>eng</dc:language>
    <dc:creator>Scharpf, Philipp</dc:creator>
    <dc:contributor>Schubotz, Moritz</dc:contributor>
    <dcterms:abstract xml:lang="eng">The increasing number of questions on Question Answering (QA) platforms like Math Stack Exchange (MSE) signifies a growing information need to answer math-related questions. However, there is currently very little research on approaches for an open data QA system that retrieves mathematical formulae using their concept names or querying formula identifier relationships from knowledge graphs. In this paper, we aim to bridge the gap by presenting data mining methods and benchmark results to employ Mathematical Entity Linking (MathEL) and Unsupervised Formula Labeling (UFL) for semantic formula search and mathematical question answering (MathQA) on the arXiv preprint repository, Wikipedia, and Wikidata. The new methods extend our previously introduced system, which is part of the Wikimedia ecosystem of free knowledge. Based on different types of information needs, we evaluate our system in 15 information need modes, assessing over 7,000 query results. Furthermore, we compare its performance to a commercial knowledge-base and calculation-engine (Wolfram Alpha) and search-engine (Google). The open source system is hosted by Wiki-media at https://mathqa.wmflabs.org. A demovideo is available at purl.org/mathqa.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-11T08:18:40Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59116"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Schubotz, Moritz</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-11T08:18:40Z</dc:date>
    <dcterms:issued>2022</dcterms:issued>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59116/1/Scharpf_2-1ied3kpi6snmb6.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen