Novel kinetic trapping in charged colloidal clusters due to self-induced surface charge organization

Loading...
Thumbnail Image
Date
2013
Authors
Murata, Ken-ichiro
Tanaka, Hajime
Williams, Stephen R.
Malins, Alex
Royall, C. Patrick
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Scientific Reports ; 3 (2013). - 2072. - eISSN 2045-2322
Abstract
Colloidal clusters are an unusual state of matter where tunable interactions enable a sufficient reduction in their degrees of freedom that their energy landscapes can become tractable — they form a playground for statistical mechanics and promise unprecedented control of structure on the submicron lengthscale. We study colloidal clusters in a system where a short-ranged polymer-induced attraction drives clustering, while a weak, long-ranged electrostatic repulsion prevents extensive aggregation. We compare experimental yields of cluster structures with theory which assumes simple addition of competing isotropic interactions between the colloids. Here we show that for clusters of size 4 ≤ m ≤ 7, the yield of minimum energy clusters is much less than expected. We attribute this to an anisotropic self-organized surface charge distribution which leads to unexpected kinetic trapping. We introduce a model for the coupling between counterions and binding sites on the colloid surface with which we interpret our findings.
Summary in another language
Subject (DDC)
530 Physics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690KLIX, Christian L., Ken-ichiro MURATA, Hajime TANAKA, Stephen R. WILLIAMS, Alex MALINS, C. Patrick ROYALL, 2013. Novel kinetic trapping in charged colloidal clusters due to self-induced surface charge organization. In: Scientific Reports. 3, 2072. eISSN 2045-2322. Available under: doi: 10.1038/srep02072
BibTex
@article{Klix2013Novel-43010,
  year={2013},
  doi={10.1038/srep02072},
  title={Novel kinetic trapping in charged colloidal clusters due to self-induced surface charge organization},
  volume={3},
  journal={Scientific Reports},
  author={Klix, Christian L. and Murata, Ken-ichiro and Tanaka, Hajime and Williams, Stephen R. and Malins, Alex and Royall, C. Patrick},
  note={Article Number: 2072}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43010">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-08-08T06:58:19Z</dc:date>
    <dc:contributor>Murata, Ken-ichiro</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43010"/>
    <dc:contributor>Malins, Alex</dc:contributor>
    <dc:contributor>Royall, C. Patrick</dc:contributor>
    <dc:creator>Klix, Christian L.</dc:creator>
    <dc:creator>Malins, Alex</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-sa/3.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43010/1/Klix_2-1ibqxr7ej4i2m1.pdf"/>
    <dc:contributor>Tanaka, Hajime</dc:contributor>
    <dcterms:issued>2013</dcterms:issued>
    <dc:creator>Murata, Ken-ichiro</dc:creator>
    <dcterms:abstract xml:lang="eng">Colloidal clusters are an unusual state of matter where tunable interactions enable a sufficient reduction in their degrees of freedom that their energy landscapes can become tractable — they form a playground for statistical mechanics and promise unprecedented control of structure on the submicron lengthscale. We study colloidal clusters in a system where a short-ranged polymer-induced attraction drives clustering, while a weak, long-ranged electrostatic repulsion prevents extensive aggregation. We compare experimental yields of cluster structures with theory which assumes simple addition of competing isotropic interactions between the colloids. Here we show that for clusters of size 4 ≤ m ≤ 7, the yield of minimum energy clusters is much less than expected. We attribute this to an anisotropic self-organized surface charge distribution which leads to unexpected kinetic trapping. We introduce a model for the coupling between counterions and binding sites on the colloid surface with which we interpret our findings.</dcterms:abstract>
    <dc:contributor>Williams, Stephen R.</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-08-08T06:58:19Z</dcterms:available>
    <dc:rights>Attribution-NonCommercial-ShareAlike 3.0 Unported</dc:rights>
    <dcterms:title>Novel kinetic trapping in charged colloidal clusters due to self-induced surface charge organization</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:creator>Tanaka, Hajime</dc:creator>
    <dc:creator>Royall, C. Patrick</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43010/1/Klix_2-1ibqxr7ej4i2m1.pdf"/>
    <dc:creator>Williams, Stephen R.</dc:creator>
    <dc:contributor>Klix, Christian L.</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes