Publikation:

Visual quality metrics and human perception : an initial study on 2D projections of large multidimensional data

Lade...
Vorschaubild

Dateien

279.pdf
279.pdfGröße: 369.96 KBDownloads: 501

Datum

2010

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Proceedings of the International Conference on Advanced Visual Interfaces - AVI '10. New York, New York, USA: ACM Press, 2010, pp. 49-56. ISBN 978-1-4503-0076-6. Available under: doi: 10.1145/1842993.1843002

Zusammenfassung

Visual quality metrics have been recently devised to automatically extract interesting visual projections out of a large number of available candidates in the exploration of high-dimensional databases. The metrics permit for instance to search within a large set of scatter plots (e.g., in a scatter plot matrix) and select the views that contain the best separation among clusters. The rationale behind these techniques is that automatic selection of "best" views is not only useful but also necessary when the number of potential projections exceeds the limit of human interpretation. While useful as a concept in general, such metrics received so far limited validation in terms of human perception. In this paper we present a perceptual study investigating the relationship between human interpretation of clusters in 2D scatter plots and the measures automatically extracted out of them. Specifically we compare a series of selected metrics and analyze how they predict human detection of clusters. A thorough discussion of results follows with reflections on their impact and directions for future research.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Information Systems, Information interfaces and presentation, User Interfaces, Graphical User Interfaces, Computing Methodologies, Pattern

Konferenz

The International Conference on Advanced Visual Interfaces - AVI '10, 26. Mai 2010 - 28. Mai 2010, Roma, Italy
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690TATU, Andrada, Peter BAK, Enrico BERTINI, Daniel A. KEIM, Joern SCHNEIDEWIND, 2010. Visual quality metrics and human perception : an initial study on 2D projections of large multidimensional data. The International Conference on Advanced Visual Interfaces - AVI '10. Roma, Italy, 26. Mai 2010 - 28. Mai 2010. In: Proceedings of the International Conference on Advanced Visual Interfaces - AVI '10. New York, New York, USA: ACM Press, 2010, pp. 49-56. ISBN 978-1-4503-0076-6. Available under: doi: 10.1145/1842993.1843002
BibTex
@inproceedings{Tatu2010Visua-6197,
  year={2010},
  doi={10.1145/1842993.1843002},
  title={Visual quality metrics and human perception : an initial study on 2D projections of large multidimensional data},
  isbn={978-1-4503-0076-6},
  publisher={ACM Press},
  address={New York, New York, USA},
  booktitle={Proceedings of the International Conference on Advanced Visual Interfaces - AVI '10},
  pages={49--56},
  author={Tatu, Andrada and Bak, Peter and Bertini, Enrico and Keim, Daniel A. and Schneidewind, Joern}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6197">
    <dc:creator>Bertini, Enrico</dc:creator>
    <dc:format>application/pdf</dc:format>
    <dc:creator>Schneidewind, Joern</dc:creator>
    <dc:creator>Tatu, Andrada</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:contributor>Schneidewind, Joern</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Bertini, Enrico</dc:contributor>
    <dcterms:issued>2010</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:10:07Z</dc:date>
    <dcterms:bibliographicCitation>First publ. in: Working Conference on Advanced Visual Interfaces : AVI 10 ; Roma, Italy, May 226 - 28, 2010 , Proceedings / Ed. Giuseppe Santucci. - New York : ACM, 2010. - S. 49-56. - ISBN 978-1-4503-0076-6</dcterms:bibliographicCitation>
    <dc:language>deu</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6197/1/279.pdf"/>
    <dcterms:title>Visual quality metrics and human perception : an initial study on 2D projections of large multidimensional data</dcterms:title>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6197"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6197/1/279.pdf"/>
    <dc:creator>Bak, Peter</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">Visual quality metrics have been recently devised to automatically extract interesting visual projections out of a large number of available candidates in the exploration of high-dimensional databases. The metrics permit for instance to search within a large set of scatter plots (e.g., in a scatter plot matrix) and select the views that contain the best separation among clusters. The rationale behind these techniques is that automatic selection of "best" views is not only useful but also necessary when the number of potential projections exceeds the limit of human interpretation. While useful as a concept in general, such metrics received so far limited validation in terms of human perception. In this paper we present a perceptual study investigating the relationship between human interpretation of clusters in 2D scatter plots and the measures automatically extracted out of them. Specifically we compare a series of selected metrics and analyze how they predict human detection of clusters. A thorough discussion of results follows with reflections on their impact and directions for future research.</dcterms:abstract>
    <dc:contributor>Bak, Peter</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Tatu, Andrada</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen