Publikation: Probabilistic Modeling of Swarming Systems
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This chapter provides on overview on probabilistic modeling of swarming systems. We first show how population dynamics models can be derived from the master equation in physics. We then present models with increasing complexity and with varying degrees of spatial dynamics. We will first introduce a model for collaboration and show how macroscopic models can be used to derive optimal policies for the individual robot analytically. We then introduce two models for collective decisions; first modeling spatiality implicitly by tracking the number of robots at specific sites and then explicitly using a Fokker–Planck equation. The chapter is concluded with open challenges in combining non-spatial with spatial probabilistic modeling techniques.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CORRELL, Nikolaus, Heiko HAMANN, 2015. Probabilistic Modeling of Swarming Systems. In: KACPRZYK, Janusz, Hrsg., Witold PEDRYCZ, Hrsg.. Springer Handbook of Computational Intelligence. Berlin: Springer, 2015, S. 1423-1432. Springer Handbooks. ISBN 978-3-662-43504-5. Verfügbar unter: doi: 10.1007/978-3-662-43505-2_74BibTex
@incollection{Correll2015Proba-59794, year={2015}, doi={10.1007/978-3-662-43505-2_74}, title={Probabilistic Modeling of Swarming Systems}, isbn={978-3-662-43504-5}, publisher={Springer}, address={Berlin}, series={Springer Handbooks}, booktitle={Springer Handbook of Computational Intelligence}, pages={1423--1432}, editor={Kacprzyk, Janusz and Pedrycz, Witold}, author={Correll, Nikolaus and Hamann, Heiko} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59794"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-18T13:37:14Z</dcterms:available> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2015</dcterms:issued> <dc:contributor>Hamann, Heiko</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-18T13:37:14Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Correll, Nikolaus</dc:contributor> <dc:creator>Hamann, Heiko</dc:creator> <dcterms:title>Probabilistic Modeling of Swarming Systems</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Correll, Nikolaus</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59794"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59794/1/Correll_2-1i576n1aewpav7.pdf"/> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59794/1/Correll_2-1i576n1aewpav7.pdf"/> <dcterms:abstract xml:lang="eng">This chapter provides on overview on probabilistic modeling of swarming systems. We first show how population dynamics models can be derived from the master equation in physics. We then present models with increasing complexity and with varying degrees of spatial dynamics. We will first introduce a model for collaboration and show how macroscopic models can be used to derive optimal policies for the individual robot analytically. We then introduce two models for collective decisions; first modeling spatiality implicitly by tracking the number of robots at specific sites and then explicitly using a Fokker–Planck equation. The chapter is concluded with open challenges in combining non-spatial with spatial probabilistic modeling techniques.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>