Publikation:

A Linear Time Algorithm for the Arc Disjoint Menger Problem in Planar Directed Graphs

Lade...
Vorschaubild

Dateien

fulltext.pdf
fulltext.pdfGröße: 229.17 KBDownloads: 457

Datum

2000

Autor:innen

Wagner, Dorothea

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Algorithmica. 2000, 28(1), pp. 16-36. Available under: doi: 10.1007/s004530010029

Zusammenfassung

Given a graph G = (V, E) and two vertices s, t belong to V, s unequal to t, the Menger problem is to find a maximum number of disjoint paths connecting s and t. Depending on whether the input graph is directed or not, and what kind of disjointness criterion is demanded, this general formulation is specialized to the directed or undirected vertex, and the edge or arc disjoint Menger problem, respectively. For planar graphs the edge disjoint Menger problem has been solved to optimality [W2], while the fastest algorithm for the arc disjoint version is Weihe s general maximum flow algorithm for planar networks [W1], which has running time O (abs(V) log abs(V)). Here we present a linear time, i.e., asymptotically optimal, algorithm for the arc disjoint version in planar directed graphs.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

graph algorithms, disjoint paths, planar graphs

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BRANDES, Ulrik, Dorothea WAGNER, 2000. A Linear Time Algorithm for the Arc Disjoint Menger Problem in Planar Directed Graphs. In: Algorithmica. 2000, 28(1), pp. 16-36. Available under: doi: 10.1007/s004530010029
BibTex
@article{Brandes2000Linea-5897,
  year={2000},
  doi={10.1007/s004530010029},
  title={A Linear Time Algorithm for the Arc Disjoint Menger Problem in Planar Directed Graphs},
  number={1},
  volume={28},
  journal={Algorithmica},
  pages={16--36},
  author={Brandes, Ulrik and Wagner, Dorothea}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5897">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Brandes, Ulrik</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5897"/>
    <dc:contributor>Wagner, Dorothea</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:format>application/pdf</dc:format>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>A Linear Time Algorithm for the Arc Disjoint Menger Problem in Planar Directed Graphs</dcterms:title>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dcterms:abstract xml:lang="eng">Given a graph G = (V, E) and two vertices s, t belong to V, s unequal to t, the Menger problem is to find a maximum number of disjoint paths connecting s and t. Depending on whether the input graph is directed or not, and what kind of disjointness criterion is demanded, this general formulation is specialized to the directed or undirected vertex, and the edge or arc disjoint Menger problem, respectively. For planar graphs the edge disjoint Menger problem has been solved to optimality [W2], while the fastest algorithm for the arc disjoint version is Weihe s general maximum flow algorithm for planar networks [W1], which has running time O (abs(V) log abs(V)). Here we present a linear time, i.e., asymptotically optimal, algorithm for the arc disjoint version in planar directed graphs.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:bibliographicCitation>First publ. in: Algorithmica ; 28 (2000), 1. - S. 16-36</dcterms:bibliographicCitation>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5897/1/fulltext.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5897/1/fulltext.pdf"/>
    <dc:creator>Brandes, Ulrik</dc:creator>
    <dcterms:issued>2000</dcterms:issued>
    <dc:creator>Wagner, Dorothea</dc:creator>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:01:13Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:01:13Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen