Publikation: A Linear Time Algorithm for the Arc Disjoint Menger Problem in Planar Directed Graphs
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Given a graph G = (V, E) and two vertices s, t belong to V, s unequal to t, the Menger problem is to find a maximum number of disjoint paths connecting s and t. Depending on whether the input graph is directed or not, and what kind of disjointness criterion is demanded, this general formulation is specialized to the directed or undirected vertex, and the edge or arc disjoint Menger problem, respectively. For planar graphs the edge disjoint Menger problem has been solved to optimality [W2], while the fastest algorithm for the arc disjoint version is Weihe s general maximum flow algorithm for planar networks [W1], which has running time O (abs(V) log abs(V)). Here we present a linear time, i.e., asymptotically optimal, algorithm for the arc disjoint version in planar directed graphs.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BRANDES, Ulrik, Dorothea WAGNER, 2000. A Linear Time Algorithm for the Arc Disjoint Menger Problem in Planar Directed Graphs. In: Algorithmica. 2000, 28(1), pp. 16-36. Available under: doi: 10.1007/s004530010029BibTex
@article{Brandes2000Linea-5897, year={2000}, doi={10.1007/s004530010029}, title={A Linear Time Algorithm for the Arc Disjoint Menger Problem in Planar Directed Graphs}, number={1}, volume={28}, journal={Algorithmica}, pages={16--36}, author={Brandes, Ulrik and Wagner, Dorothea} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5897"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Brandes, Ulrik</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5897"/> <dc:contributor>Wagner, Dorothea</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:format>application/pdf</dc:format> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>A Linear Time Algorithm for the Arc Disjoint Menger Problem in Planar Directed Graphs</dcterms:title> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dcterms:abstract xml:lang="eng">Given a graph G = (V, E) and two vertices s, t belong to V, s unequal to t, the Menger problem is to find a maximum number of disjoint paths connecting s and t. Depending on whether the input graph is directed or not, and what kind of disjointness criterion is demanded, this general formulation is specialized to the directed or undirected vertex, and the edge or arc disjoint Menger problem, respectively. For planar graphs the edge disjoint Menger problem has been solved to optimality [W2], while the fastest algorithm for the arc disjoint version is Weihe s general maximum flow algorithm for planar networks [W1], which has running time O (abs(V) log abs(V)). Here we present a linear time, i.e., asymptotically optimal, algorithm for the arc disjoint version in planar directed graphs.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:bibliographicCitation>First publ. in: Algorithmica ; 28 (2000), 1. - S. 16-36</dcterms:bibliographicCitation> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5897/1/fulltext.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5897/1/fulltext.pdf"/> <dc:creator>Brandes, Ulrik</dc:creator> <dcterms:issued>2000</dcterms:issued> <dc:creator>Wagner, Dorothea</dc:creator> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:01:13Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:01:13Z</dcterms:available> </rdf:Description> </rdf:RDF>