Publikation: Scaling factorization machines to relational data
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The most common approach in predictive modeling is to describe cases with feature vectors (aka design matrix). Many machine learning methods such as linear regression or support vector machines rely on this representation. However, when the underlying data has strong relational patterns, especially relations with high cardinality, the design matrix can get very large which can make learning and prediction slow or even infeasible.
This work solves this issue by making use of repeating patterns in the design matrix which stem from the underlying relational structure of the data. It is shown how coordinate descent learning and Bayesian Markov Chain Monte Carlo inference can be scaled for linear regression and factorization machine models. Empirically, it is shown on two large scale and very competitive datasets (Netflix prize, KDDCup 2012), that (1) standard learning algorithms based on the design matrix representation cannot scale to relational predictor variables, (2) the proposed new algorithms scale and (3) the predictive quality of the proposed generic feature-based approach is as good as the best specialized models that have been tailored to the respective tasks.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
RENDLE, Steffen, 2013. Scaling factorization machines to relational data. In: Proceedings of the VLDB Endowment. 2013, 6(5), pp. 337-348. ISSN 2150-8097BibTex
@article{Rendle2013Scali-26517, year={2013}, title={Scaling factorization machines to relational data}, number={5}, volume={6}, issn={2150-8097}, journal={Proceedings of the VLDB Endowment}, pages={337--348}, author={Rendle, Steffen} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/26517"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Rendle, Steffen</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-21T12:08:42Z</dc:date> <dc:creator>Rendle, Steffen</dc:creator> <dcterms:bibliographicCitation>Proceedings of the VLDB Endowment ; 6 (2013), 5. - S. 337-348</dcterms:bibliographicCitation> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/26517"/> <dcterms:title>Scaling factorization machines to relational data</dcterms:title> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-02-21T12:08:42Z</dcterms:available> <dcterms:issued>2013</dcterms:issued> <dcterms:abstract xml:lang="eng">The most common approach in predictive modeling is to describe cases with feature vectors (aka design matrix). Many machine learning methods such as linear regression or support vector machines rely on this representation. However, when the underlying data has strong relational patterns, especially relations with high cardinality, the design matrix can get very large which can make learning and prediction slow or even infeasible.<br />This work solves this issue by making use of repeating patterns in the design matrix which stem from the underlying relational structure of the data. It is shown how coordinate descent learning and Bayesian Markov Chain Monte Carlo inference can be scaled for linear regression and factorization machine models. Empirically, it is shown on two large scale and very competitive datasets (Netflix prize, KDDCup 2012), that (1) standard learning algorithms based on the design matrix representation cannot scale to relational predictor variables, (2) the proposed new algorithms scale and (3) the predictive quality of the proposed generic feature-based approach is as good as the best specialized models that have been tailored to the respective tasks.</dcterms:abstract> </rdf:Description> </rdf:RDF>