Publikation: Convex semigroups on Lp-like spaces
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper, we investigate convex semigroups on Banach lattices with order continuous norm, having Lp-spaces in mind as a typical application. We show that the basic results from linear C0-semigroup theory extend to the convex case. We prove that the generator of a convex C0-semigroup is closed and uniquely determines the semigroup whenever the domain is dense. Moreover, the domain of the generator is invariant under the semigroup, a result that leads to the well-posedness of the related Cauchy problem. In a last step, we provide conditions for the existence and strong continuity of semigroup envelopes for families of C0-semigroups. The results are discussed in several examples such as semilinear heat equations and nonlinear integro-differential equations.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DENK, Robert, Michael KUPPER, Max NENDEL, 2021. Convex semigroups on Lp-like spaces. In: Journal of Evolution Equations. Springer. 2021, 21, pp. 2491-2521. ISSN 1424-3199. eISSN 1424-3202. Available under: doi: 10.1007/s00028-021-00693-3BibTex
@article{Denk2021Conve-53493, year={2021}, doi={10.1007/s00028-021-00693-3}, title={Convex semigroups on L<sup>p</sup>-like spaces}, volume={21}, issn={1424-3199}, journal={Journal of Evolution Equations}, pages={2491--2521}, author={Denk, Robert and Kupper, Michael and Nendel, Max} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53493"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Nendel, Max</dc:creator> <dcterms:issued>2021</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-27T07:07:01Z</dcterms:available> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53493/1/Denk_2-1hvvqnrwrab710.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Convex semigroups on L<sup>p</sup>-like spaces</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Denk, Robert</dc:contributor> <dcterms:abstract xml:lang="eng">In this paper, we investigate convex semigroups on Banach lattices with order continuous norm, having L<sup>p</sup>-spaces in mind as a typical application. We show that the basic results from linear C<sub>0</sub>-semigroup theory extend to the convex case. We prove that the generator of a convex C<sub>0</sub>-semigroup is closed and uniquely determines the semigroup whenever the domain is dense. Moreover, the domain of the generator is invariant under the semigroup, a result that leads to the well-posedness of the related Cauchy problem. In a last step, we provide conditions for the existence and strong continuity of semigroup envelopes for families of C<sub>0</sub>-semigroups. The results are discussed in several examples such as semilinear heat equations and nonlinear integro-differential equations.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53493/1/Denk_2-1hvvqnrwrab710.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-27T07:07:01Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53493"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Kupper, Michael</dc:creator> <dc:creator>Denk, Robert</dc:creator> <dc:contributor>Nendel, Max</dc:contributor> <dc:contributor>Kupper, Michael</dc:contributor> </rdf:Description> </rdf:RDF>