Publikation: On thinning methods for data assimilation of satellite observations
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Thinning of observational data sets is an essential task in assimilation of satellite data for numerical weather forecast. In this work we modify and improve the scheme of so-called estimation error analysis (EEA). EEA is an adaptive thinning method that iteratively removes observations from a given data set, guided by a special approximation error measure evaluated at all original observation points. We propose EEA variants that differ in methodological and performance aspects, such as the Grid-EEA method, where errors are evaluated on a regular grid on the globe. Moreover, in the Top-Down EEA, we propose to construct the thinnings by an iterative point insertion strategy, which leads to an improved performance since the number of insertion steps is typically much smaller than the number of corresponding removal operations in EEA. We also provide an efficient implementation of the proposed methods yielding a significant acceleration of the standard EEA approach.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
OCHOTTA, Tilo, Constanze GEBHARDT, Vladimir BONDATENKO, Dietmar SAUPE, Werner WERGEN, 2007. On thinning methods for data assimilation of satellite observationsBibTex
@inproceedings{Ochotta2007thinn-22510, year={2007}, title={On thinning methods for data assimilation of satellite observations}, author={Ochotta, Tilo and Gebhardt, Constanze and Bondatenko, Vladimir and Saupe, Dietmar and Wergen, Werner}, note={Vortrag gehalten bei: 23. International Conference on IIPS for Meteorology, Oceanography and Hydrology, San Antonio, Texas, 2007} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22510"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22510"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Ochotta, Tilo</dc:creator> <dcterms:abstract xml:lang="eng">Thinning of observational data sets is an essential task in assimilation of satellite data for numerical weather forecast. In this work we modify and improve the scheme of so-called estimation error analysis (EEA). EEA is an adaptive thinning method that iteratively removes observations from a given data set, guided by a special approximation error measure evaluated at all original observation points. We propose EEA variants that differ in methodological and performance aspects, such as the Grid-EEA method, where errors are evaluated on a regular grid on the globe. Moreover, in the Top-Down EEA, we propose to construct the thinnings by an iterative point insertion strategy, which leads to an improved performance since the number of insertion steps is typically much smaller than the number of corresponding removal operations in EEA. We also provide an efficient implementation of the proposed methods yielding a significant acceleration of the standard EEA approach.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22510/1/Ochotta_225108.pdf"/> <dc:contributor>Saupe, Dietmar</dc:contributor> <dc:contributor>Bondatenko, Vladimir</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-27T16:59:46Z</dcterms:available> <dc:creator>Saupe, Dietmar</dc:creator> <dc:language>eng</dc:language> <dc:creator>Bondatenko, Vladimir</dc:creator> <dcterms:title>On thinning methods for data assimilation of satellite observations</dcterms:title> <dc:creator>Gebhardt, Constanze</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22510/1/Ochotta_225108.pdf"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Ochotta, Tilo</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Wergen, Werner</dc:contributor> <dc:creator>Wergen, Werner</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-27T16:59:46Z</dc:date> <dcterms:issued>2007</dcterms:issued> <dc:contributor>Gebhardt, Constanze</dc:contributor> </rdf:Description> </rdf:RDF>