Publikation: On aims and methods of collective animal behaviour
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Deutsche Forschungsgemeinschaft (DFG): EXC 2117-422037984
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Collective animal behaviour is a subfield of behavioural ecology, making extensive use of its tools of observation, experimental manipulation and model building. However, a fundamental behavioural ecology approach, the application of optimality theory, has been comparatively neglected in collective animal behaviour. This article seeks to address this imbalance, by outlining an evolutionary theory framework for the discipline. The application of optimality theory to collective animal behaviour requires a number of questions to be addressed. First, what is the correct quantity to optimize? This can be achieved via a combination of considering the organisms' life history, alongside tools such as statistical decision theory and stochastic dynamic programming. Second, what mechanism is appropriate for optimal behaviour? This involves ensuring that models are self-consistent rather than assuming parameter values. Third, at what level of selection does optimization act? Selection acts on the individual except in very particular circumstances, yet collective animal behaviour phenomena are group level, thus introducing a risk of confusing at what level adaptive properties emerge. This article presents examples under each of the three questions, as well as discussing mismatches between theory and observation. In doing so, it is hoped that collective animal behaviour fully inherits the tools and philosophy of its parent discipline of behavioural ecology.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MARSHALL, James A.R., Andreagiovanni REINA, 2024. On aims and methods of collective animal behaviour. In: Animal Behaviour. Elsevier. 2024, 210, S. 189-197. ISSN 0003-3472. Verfügbar unter: doi: 10.1016/j.anbehav.2024.01.024BibTex
@article{Marshall2024-04metho-69833, year={2024}, doi={10.1016/j.anbehav.2024.01.024}, title={On aims and methods of collective animal behaviour}, volume={210}, issn={0003-3472}, journal={Animal Behaviour}, pages={189--197}, author={Marshall, James A.R. and Reina, Andreagiovanni} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69833"> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69833"/> <dcterms:title>On aims and methods of collective animal behaviour</dcterms:title> <dc:creator>Marshall, James A.R.</dc:creator> <dc:contributor>Marshall, James A.R.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Reina, Andreagiovanni</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2024-04</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69833/1/Reina_2-1hsv3briiz4jj5.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-04-24T09:03:56Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract>Collective animal behaviour is a subfield of behavioural ecology, making extensive use of its tools of observation, experimental manipulation and model building. However, a fundamental behavioural ecology approach, the application of optimality theory, has been comparatively neglected in collective animal behaviour. This article seeks to address this imbalance, by outlining an evolutionary theory framework for the discipline. The application of optimality theory to collective animal behaviour requires a number of questions to be addressed. First, what is the correct quantity to optimize? This can be achieved via a combination of considering the organisms' life history, alongside tools such as statistical decision theory and stochastic dynamic programming. Second, what mechanism is appropriate for optimal behaviour? This involves ensuring that models are self-consistent rather than assuming parameter values. Third, at what level of selection does optimization act? Selection acts on the individual except in very particular circumstances, yet collective animal behaviour phenomena are group level, thus introducing a risk of confusing at what level adaptive properties emerge. This article presents examples under each of the three questions, as well as discussing mismatches between theory and observation. In doing so, it is hoped that collective animal behaviour fully inherits the tools and philosophy of its parent discipline of behavioural ecology.</dcterms:abstract> <dc:creator>Reina, Andreagiovanni</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69833/1/Reina_2-1hsv3briiz4jj5.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-04-24T09:03:56Z</dcterms:available> </rdf:Description> </rdf:RDF>