Probabilistic risk assessment : the keystone for the future of toxicology
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Safety sciences must cope with uncertainty of models and results as well as information gaps. Acknowledging this uncertainty necessitates embracing probabilities and accepting the remaining risk. Every toxicological tool delivers only probable results. Traditionally, this is taken into account by using uncertainty / assessment factors and worst-case / precautionary approaches and thresholds. Probabilistic methods and Bayesian approaches seek to characterize these uncertainties and promise to support better risk assessment and, thereby, improve risk management decisions. Actual assessments of uncertainty can be more realistic than worst-case scenarios and may allow less conservative safety margins. Most importantly, as soon as we agree on uncertainty, this defines room for improvement and allows a transition from traditional to new approach methods as an engineering exercise. The objective nature of these mathematical tools allows to assign each methodology its fair place in evidence integration, whether in the context of risk assessment, systematic reviews, or in the definition of an integrated testing strategy (ITS) / defined approach (DA) / integrated approach to testing and assessment (IATA). This article gives an overview of methods for probabilistic risk assessment and their application for exposure assessment, physiologically-based kinetic modelling, probability of hazard assessment (based on quantitative and read-across based structure-activity relationships, and mechanistic alerts from in vitro studies), individual susceptibility assessment, and evidence integration. Additional aspects are opportunities for uncertainty analysis of adverse outcome pathways and their relation to thresholds of toxicological concern. In conclusion, probabilistic risk assessment will be key for constructing a new toxicology paradigm – probably!
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MAERTENS, Alexandra, Emily GOLDEN, Thomas H. LUECHTEFELD, Sebastian HOFFMANN, Katya TSAIOUN, Thomas HARTUNG, 2022. Probabilistic risk assessment : the keystone for the future of toxicology. In: Alternatives to Animal Experimentation : ALTEX. Springer Spektrum. 2022, 39(1), pp. 3-29. ISSN 1868-596X. eISSN 1868-8551. Available under: doi: 10.14573/altex.2201081BibTex
@article{Maertens2022Proba-56456, year={2022}, doi={10.14573/altex.2201081}, title={Probabilistic risk assessment : the keystone for the future of toxicology}, number={1}, volume={39}, issn={1868-596X}, journal={Alternatives to Animal Experimentation : ALTEX}, pages={3--29}, author={Maertens, Alexandra and Golden, Emily and Luechtefeld, Thomas H. and Hoffmann, Sebastian and Tsaioun, Katya and Hartung, Thomas} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56456"> <dc:creator>Maertens, Alexandra</dc:creator> <dc:creator>Hartung, Thomas</dc:creator> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-09T08:38:27Z</dc:date> <dc:contributor>Luechtefeld, Thomas H.</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56456/1/Maertens_2-1hpwunn31zv1d4.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Tsaioun, Katya</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Maertens, Alexandra</dc:contributor> <dc:contributor>Golden, Emily</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Probabilistic risk assessment : the keystone for the future of toxicology</dcterms:title> <dcterms:abstract xml:lang="eng">Safety sciences must cope with uncertainty of models and results as well as information gaps. Acknowledging this uncertainty necessitates embracing probabilities and accepting the remaining risk. Every toxicological tool delivers only probable results. Traditionally, this is taken into account by using uncertainty / assessment factors and worst-case / precautionary approaches and thresholds. Probabilistic methods and Bayesian approaches seek to characterize these uncertainties and promise to support better risk assessment and, thereby, improve risk management decisions. Actual assessments of uncertainty can be more realistic than worst-case scenarios and may allow less conservative safety margins. Most importantly, as soon as we agree on uncertainty, this defines room for improvement and allows a transition from traditional to new approach methods as an engineering exercise. The objective nature of these mathematical tools allows to assign each methodology its fair place in evidence integration, whether in the context of risk assessment, systematic reviews, or in the definition of an integrated testing strategy (ITS) / defined approach (DA) / integrated approach to testing and assessment (IATA). This article gives an overview of methods for probabilistic risk assessment and their application for exposure assessment, physiologically-based kinetic modelling, probability of hazard assessment (based on quantitative and read-across based structure-activity relationships, and mechanistic alerts from in vitro studies), individual susceptibility assessment, and evidence integration. Additional aspects are opportunities for uncertainty analysis of adverse outcome pathways and their relation to thresholds of toxicological concern. In conclusion, probabilistic risk assessment will be key for constructing a new toxicology paradigm – probably!</dcterms:abstract> <dc:contributor>Tsaioun, Katya</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Hartung, Thomas</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56456/1/Maertens_2-1hpwunn31zv1d4.pdf"/> <dcterms:issued>2022</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-09T08:38:27Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56456"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Hoffmann, Sebastian</dc:creator> <dc:creator>Golden, Emily</dc:creator> <dc:contributor>Hoffmann, Sebastian</dc:contributor> <dc:creator>Luechtefeld, Thomas H.</dc:creator> </rdf:Description> </rdf:RDF>