Probabilistic risk assessment : the keystone for the future of toxicology

Lade...
Vorschaubild
Dateien
Maertens_2-1hpwunn31zv1d4.pdf
Maertens_2-1hpwunn31zv1d4.pdfGröße: 2.42 MBDownloads: 170
Datum
2022
Autor:innen
Maertens, Alexandra
Golden, Emily
Luechtefeld, Thomas H.
Tsaioun, Katya
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Gold
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Alternatives to Animal Experimentation : ALTEX. Springer Spektrum. 2022, 39(1), pp. 3-29. ISSN 1868-596X. eISSN 1868-8551. Available under: doi: 10.14573/altex.2201081
Zusammenfassung

Safety sciences must cope with uncertainty of models and results as well as information gaps. Acknowledging this uncer­tainty necessitates embracing probabilities and accepting the remaining risk. Every toxicological tool delivers only probable results. Traditionally, this is taken into account by using uncertainty / assessment factors and worst-case / precautionary approaches and thresholds. Probabilistic methods and Bayesian approaches seek to characterize these uncertainties and promise to support better risk assessment and, thereby, improve risk management decisions. Actual assessments of uncertainty can be more realistic than worst-case scenarios and may allow less conservative safety margins. Most importantly, as soon as we agree on uncertainty, this defines room for improvement and allows a transition from traditional to new approach methods as an engineering exercise. The objective nature of these mathematical tools allows to assign each methodology its fair place in evidence integration, whether in the context of risk assessment, sys­tematic reviews, or in the definition of an integrated testing strategy (ITS) / defined approach (DA) / integrated approach to testing and assessment (IATA). This article gives an overview of methods for probabilistic risk assessment and their application for exposure assessment, physiologically-based kinetic modelling, probability of hazard assessment (based on quantitative and read-across based structure-activity relationships, and mechanistic alerts from in vitro studies), indi­vidual susceptibility assessment, and evidence integration. Additional aspects are opportunities for uncertainty analysis of adverse outcome pathways and their relation to thresholds of toxicological concern. In conclusion, probabilistic risk assessment will be key for constructing a new toxicology paradigm – probably!

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
570 Biowissenschaften, Biologie
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690MAERTENS, Alexandra, Emily GOLDEN, Thomas H. LUECHTEFELD, Sebastian HOFFMANN, Katya TSAIOUN, Thomas HARTUNG, 2022. Probabilistic risk assessment : the keystone for the future of toxicology. In: Alternatives to Animal Experimentation : ALTEX. Springer Spektrum. 2022, 39(1), pp. 3-29. ISSN 1868-596X. eISSN 1868-8551. Available under: doi: 10.14573/altex.2201081
BibTex
@article{Maertens2022Proba-56456,
  year={2022},
  doi={10.14573/altex.2201081},
  title={Probabilistic risk assessment : the keystone for the future of toxicology},
  number={1},
  volume={39},
  issn={1868-596X},
  journal={Alternatives to Animal Experimentation : ALTEX},
  pages={3--29},
  author={Maertens, Alexandra and Golden, Emily and Luechtefeld, Thomas H. and Hoffmann, Sebastian and Tsaioun, Katya and Hartung, Thomas}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56456">
    <dc:creator>Maertens, Alexandra</dc:creator>
    <dc:creator>Hartung, Thomas</dc:creator>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-09T08:38:27Z</dc:date>
    <dc:contributor>Luechtefeld, Thomas H.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56456/1/Maertens_2-1hpwunn31zv1d4.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Tsaioun, Katya</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Maertens, Alexandra</dc:contributor>
    <dc:contributor>Golden, Emily</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Probabilistic risk assessment : the keystone for the future of toxicology</dcterms:title>
    <dcterms:abstract xml:lang="eng">Safety sciences must cope with uncertainty of models and results as well as information gaps. Acknowledging this uncer­tainty necessitates embracing probabilities and accepting the remaining risk. Every toxicological tool delivers only probable results. Traditionally, this is taken into account by using uncertainty / assessment factors and worst-case / precautionary approaches and thresholds. Probabilistic methods and Bayesian approaches seek to characterize these uncertainties and promise to support better risk assessment and, thereby, improve risk management decisions. Actual assessments of uncertainty can be more realistic than worst-case scenarios and may allow less conservative safety margins. Most importantly, as soon as we agree on uncertainty, this defines room for improvement and allows a transition from traditional to new approach methods as an engineering exercise. The objective nature of these mathematical tools allows to assign each methodology its fair place in evidence integration, whether in the context of risk assessment, sys­tematic reviews, or in the definition of an integrated testing strategy (ITS) / defined approach (DA) / integrated approach to testing and assessment (IATA). This article gives an overview of methods for probabilistic risk assessment and their application for exposure assessment, physiologically-based kinetic modelling, probability of hazard assessment (based on quantitative and read-across based structure-activity relationships, and mechanistic alerts from in vitro studies), indi­vidual susceptibility assessment, and evidence integration. Additional aspects are opportunities for uncertainty analysis of adverse outcome pathways and their relation to thresholds of toxicological concern. In conclusion, probabilistic risk assessment will be key for constructing a new toxicology paradigm – probably!</dcterms:abstract>
    <dc:contributor>Tsaioun, Katya</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Hartung, Thomas</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56456/1/Maertens_2-1hpwunn31zv1d4.pdf"/>
    <dcterms:issued>2022</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-09T08:38:27Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56456"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Hoffmann, Sebastian</dc:creator>
    <dc:creator>Golden, Emily</dc:creator>
    <dc:contributor>Hoffmann, Sebastian</dc:contributor>
    <dc:creator>Luechtefeld, Thomas H.</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen