Publikation:

Probabilistic risk assessment : the keystone for the future of toxicology

Lade...
Vorschaubild

Dateien

Maertens_2-1hpwunn31zv1d4.pdf
Maertens_2-1hpwunn31zv1d4.pdfGröße: 2.42 MBDownloads: 181

Datum

2022

Autor:innen

Maertens, Alexandra
Golden, Emily
Luechtefeld, Thomas H.
Tsaioun, Katya

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Alternatives to Animal Experimentation : ALTEX. Springer Spektrum. 2022, 39(1), pp. 3-29. ISSN 1868-596X. eISSN 1868-8551. Available under: doi: 10.14573/altex.2201081

Zusammenfassung

Safety sciences must cope with uncertainty of models and results as well as information gaps. Acknowledging this uncer­tainty necessitates embracing probabilities and accepting the remaining risk. Every toxicological tool delivers only probable results. Traditionally, this is taken into account by using uncertainty / assessment factors and worst-case / precautionary approaches and thresholds. Probabilistic methods and Bayesian approaches seek to characterize these uncertainties and promise to support better risk assessment and, thereby, improve risk management decisions. Actual assessments of uncertainty can be more realistic than worst-case scenarios and may allow less conservative safety margins. Most importantly, as soon as we agree on uncertainty, this defines room for improvement and allows a transition from traditional to new approach methods as an engineering exercise. The objective nature of these mathematical tools allows to assign each methodology its fair place in evidence integration, whether in the context of risk assessment, sys­tematic reviews, or in the definition of an integrated testing strategy (ITS) / defined approach (DA) / integrated approach to testing and assessment (IATA). This article gives an overview of methods for probabilistic risk assessment and their application for exposure assessment, physiologically-based kinetic modelling, probability of hazard assessment (based on quantitative and read-across based structure-activity relationships, and mechanistic alerts from in vitro studies), indi­vidual susceptibility assessment, and evidence integration. Additional aspects are opportunities for uncertainty analysis of adverse outcome pathways and their relation to thresholds of toxicological concern. In conclusion, probabilistic risk assessment will be key for constructing a new toxicology paradigm – probably!

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MAERTENS, Alexandra, Emily GOLDEN, Thomas H. LUECHTEFELD, Sebastian HOFFMANN, Katya TSAIOUN, Thomas HARTUNG, 2022. Probabilistic risk assessment : the keystone for the future of toxicology. In: Alternatives to Animal Experimentation : ALTEX. Springer Spektrum. 2022, 39(1), pp. 3-29. ISSN 1868-596X. eISSN 1868-8551. Available under: doi: 10.14573/altex.2201081
BibTex
@article{Maertens2022Proba-56456,
  year={2022},
  doi={10.14573/altex.2201081},
  title={Probabilistic risk assessment : the keystone for the future of toxicology},
  number={1},
  volume={39},
  issn={1868-596X},
  journal={Alternatives to Animal Experimentation : ALTEX},
  pages={3--29},
  author={Maertens, Alexandra and Golden, Emily and Luechtefeld, Thomas H. and Hoffmann, Sebastian and Tsaioun, Katya and Hartung, Thomas}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56456">
    <dc:creator>Maertens, Alexandra</dc:creator>
    <dc:creator>Hartung, Thomas</dc:creator>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-09T08:38:27Z</dc:date>
    <dc:contributor>Luechtefeld, Thomas H.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56456/1/Maertens_2-1hpwunn31zv1d4.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Tsaioun, Katya</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Maertens, Alexandra</dc:contributor>
    <dc:contributor>Golden, Emily</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Probabilistic risk assessment : the keystone for the future of toxicology</dcterms:title>
    <dcterms:abstract xml:lang="eng">Safety sciences must cope with uncertainty of models and results as well as information gaps. Acknowledging this uncer­tainty necessitates embracing probabilities and accepting the remaining risk. Every toxicological tool delivers only probable results. Traditionally, this is taken into account by using uncertainty / assessment factors and worst-case / precautionary approaches and thresholds. Probabilistic methods and Bayesian approaches seek to characterize these uncertainties and promise to support better risk assessment and, thereby, improve risk management decisions. Actual assessments of uncertainty can be more realistic than worst-case scenarios and may allow less conservative safety margins. Most importantly, as soon as we agree on uncertainty, this defines room for improvement and allows a transition from traditional to new approach methods as an engineering exercise. The objective nature of these mathematical tools allows to assign each methodology its fair place in evidence integration, whether in the context of risk assessment, sys­tematic reviews, or in the definition of an integrated testing strategy (ITS) / defined approach (DA) / integrated approach to testing and assessment (IATA). This article gives an overview of methods for probabilistic risk assessment and their application for exposure assessment, physiologically-based kinetic modelling, probability of hazard assessment (based on quantitative and read-across based structure-activity relationships, and mechanistic alerts from in vitro studies), indi­vidual susceptibility assessment, and evidence integration. Additional aspects are opportunities for uncertainty analysis of adverse outcome pathways and their relation to thresholds of toxicological concern. In conclusion, probabilistic risk assessment will be key for constructing a new toxicology paradigm – probably!</dcterms:abstract>
    <dc:contributor>Tsaioun, Katya</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Hartung, Thomas</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56456/1/Maertens_2-1hpwunn31zv1d4.pdf"/>
    <dcterms:issued>2022</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-09T08:38:27Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56456"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Hoffmann, Sebastian</dc:creator>
    <dc:creator>Golden, Emily</dc:creator>
    <dc:contributor>Hoffmann, Sebastian</dc:contributor>
    <dc:creator>Luechtefeld, Thomas H.</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen