Publikation:

Bee pose estimation from single images with convolutional neural network

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2017 IEEE International Conference on Image Processing (ICIP). Piscataway, NJ: IEEE, 2017, pp. 2836-2840. eISSN 2381-8549. ISBN 978-1-5090-2176-5. Available under: doi: 10.1109/ICIP.2017.8296800

Zusammenfassung

In this paper, we present a deep convolutional neural network (ConvNet) based framework for estimating the bee pose from a single image. Unlike some existing human pose estimation methods that localize a fixed number of body joints, our method handles the cases with a varying number of targets. Compared to the existing bee pose estimation methods, our framework is more robust and accurate. It is effective even for some challenging images (e.g., when the bee is fed sugar water with a stick). The proposed framework learns a mapping from the global structure and local appearance of a bee to its pose. We evaluated our method on two challenging datasets. Experiments showed that it has achieved significant improvements over the existing insect pose estimation algorithms.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Insect pose estimation, ConvNet

Konferenz

2017 IEEE International Conference on Image Processing (ICIP), 17. Sept. 2017 - 20. Sept. 2017, Beijing, China
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DUAN, Le, Minmin SHEN, Wenjing GAO, Song CUI, Oliver DEUSSEN, 2017. Bee pose estimation from single images with convolutional neural network. 2017 IEEE International Conference on Image Processing (ICIP). Beijing, China, 17. Sept. 2017 - 20. Sept. 2017. In: 2017 IEEE International Conference on Image Processing (ICIP). Piscataway, NJ: IEEE, 2017, pp. 2836-2840. eISSN 2381-8549. ISBN 978-1-5090-2176-5. Available under: doi: 10.1109/ICIP.2017.8296800
BibTex
@inproceedings{Duan2017estim-42755,
  year={2017},
  doi={10.1109/ICIP.2017.8296800},
  title={Bee pose estimation from single images with convolutional neural network},
  isbn={978-1-5090-2176-5},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2017 IEEE International Conference on Image Processing (ICIP)},
  pages={2836--2840},
  author={Duan, Le and Shen, Minmin and Gao, Wenjing and Cui, Song and Deussen, Oliver}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42755">
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:contributor>Shen, Minmin</dc:contributor>
    <dcterms:issued>2017</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42755"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Cui, Song</dc:contributor>
    <dc:creator>Cui, Song</dc:creator>
    <dc:creator>Shen, Minmin</dc:creator>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-04T08:56:10Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-04T08:56:10Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Gao, Wenjing</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/>
    <dc:contributor>Duan, Le</dc:contributor>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dcterms:abstract xml:lang="eng">In this paper, we present a deep convolutional neural network (ConvNet) based framework for estimating the bee pose from a single image. Unlike some existing human pose estimation methods that localize a fixed number of body joints, our method handles the cases with a varying number of targets. Compared to the existing bee pose estimation methods, our framework is more robust and accurate. It is effective even for some challenging images (e.g., when the bee is fed sugar water with a stick). The proposed framework learns a mapping from the global structure and local appearance of a bee to its pose. We evaluated our method on two challenging datasets. Experiments showed that it has achieved significant improvements over the existing insect pose estimation algorithms.</dcterms:abstract>
    <dc:creator>Duan, Le</dc:creator>
    <dc:creator>Gao, Wenjing</dc:creator>
    <dcterms:title>Bee pose estimation from single images with convolutional neural network</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen