Publikation: Bee pose estimation from single images with convolutional neural network
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper, we present a deep convolutional neural network (ConvNet) based framework for estimating the bee pose from a single image. Unlike some existing human pose estimation methods that localize a fixed number of body joints, our method handles the cases with a varying number of targets. Compared to the existing bee pose estimation methods, our framework is more robust and accurate. It is effective even for some challenging images (e.g., when the bee is fed sugar water with a stick). The proposed framework learns a mapping from the global structure and local appearance of a bee to its pose. We evaluated our method on two challenging datasets. Experiments showed that it has achieved significant improvements over the existing insect pose estimation algorithms.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DUAN, Le, Minmin SHEN, Wenjing GAO, Song CUI, Oliver DEUSSEN, 2017. Bee pose estimation from single images with convolutional neural network. 2017 IEEE International Conference on Image Processing (ICIP). Beijing, China, 17. Sept. 2017 - 20. Sept. 2017. In: 2017 IEEE International Conference on Image Processing (ICIP). Piscataway, NJ: IEEE, 2017, pp. 2836-2840. eISSN 2381-8549. ISBN 978-1-5090-2176-5. Available under: doi: 10.1109/ICIP.2017.8296800BibTex
@inproceedings{Duan2017estim-42755, year={2017}, doi={10.1109/ICIP.2017.8296800}, title={Bee pose estimation from single images with convolutional neural network}, isbn={978-1-5090-2176-5}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2017 IEEE International Conference on Image Processing (ICIP)}, pages={2836--2840}, author={Duan, Le and Shen, Minmin and Gao, Wenjing and Cui, Song and Deussen, Oliver} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42755"> <dc:contributor>Deussen, Oliver</dc:contributor> <dc:contributor>Shen, Minmin</dc:contributor> <dcterms:issued>2017</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42755"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Cui, Song</dc:contributor> <dc:creator>Cui, Song</dc:creator> <dc:creator>Shen, Minmin</dc:creator> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-04T08:56:10Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-04T08:56:10Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Gao, Wenjing</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:contributor>Duan, Le</dc:contributor> <dc:creator>Deussen, Oliver</dc:creator> <dcterms:abstract xml:lang="eng">In this paper, we present a deep convolutional neural network (ConvNet) based framework for estimating the bee pose from a single image. Unlike some existing human pose estimation methods that localize a fixed number of body joints, our method handles the cases with a varying number of targets. Compared to the existing bee pose estimation methods, our framework is more robust and accurate. It is effective even for some challenging images (e.g., when the bee is fed sugar water with a stick). The proposed framework learns a mapping from the global structure and local appearance of a bee to its pose. We evaluated our method on two challenging datasets. Experiments showed that it has achieved significant improvements over the existing insect pose estimation algorithms.</dcterms:abstract> <dc:creator>Duan, Le</dc:creator> <dc:creator>Gao, Wenjing</dc:creator> <dcterms:title>Bee pose estimation from single images with convolutional neural network</dcterms:title> </rdf:Description> </rdf:RDF>