Dementia-Related Features in Longitudinal MRI : Tracking Keypoints over Time

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2014
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
MENZE, Bjoern, ed. and others. Medical Computer Vision : Algorithms for Big Data, International Workshop, MCV 2014, Held in Conjunction with MICCAI 2014, Cambridge, MA, USA, September 18, 2014, Revised Selected Papers. Cham: Springer, 2014, pp. 59-70. Lecture Notes in Computer Science. 8848. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-13971-5. Available under: doi: 10.1007/978-3-319-13972-2_6
Zusammenfassung

We aim at developing new dementia-related features based on longitudinal MRI in order to differentiate various stages of Alzheimer’s disease.

Current methods for dementia classification rely heavily on the quality of MRI preprocessing, especially on prior registration. We propose to avoid a possibly unsuccessful and always time-consuming non-rigid registration by employing local invariant features which are independent of image scale and orientation, and can be tracked over time in longitudinal studies. We detect and track such keypoints based on scale-space theory in an automatized image processing workflow, and test it on a standardized MRI collection made available by the Alzheimer’s Disease Neuroimaging Initiative (ADNI).

Our approach is very efficient for processing very large datasets collected from different sites and technical devices, and first results show that characteristic scale and movement of keypoints and their tracks differ significantly between controls and diseased subjects.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
International Workshop, MCV 2014, MICCAI 2014, 18. Sept. 2014, Cambridge, MA, USA
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690STÜHLER, Elisabeth, Michael R. BERTHOLD, 2014. Dementia-Related Features in Longitudinal MRI : Tracking Keypoints over Time. International Workshop, MCV 2014, MICCAI 2014. Cambridge, MA, USA, 18. Sept. 2014. In: MENZE, Bjoern, ed. and others. Medical Computer Vision : Algorithms for Big Data, International Workshop, MCV 2014, Held in Conjunction with MICCAI 2014, Cambridge, MA, USA, September 18, 2014, Revised Selected Papers. Cham: Springer, 2014, pp. 59-70. Lecture Notes in Computer Science. 8848. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-13971-5. Available under: doi: 10.1007/978-3-319-13972-2_6
BibTex
@inproceedings{Stuhler2014-12-10Demen-41686,
  year={2014},
  doi={10.1007/978-3-319-13972-2_6},
  title={Dementia-Related Features in Longitudinal MRI : Tracking Keypoints over Time},
  number={8848},
  isbn={978-3-319-13971-5},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Medical Computer Vision : Algorithms for Big Data, International Workshop, MCV 2014, Held in Conjunction with MICCAI 2014, Cambridge, MA, USA, September 18, 2014, Revised Selected Papers},
  pages={59--70},
  editor={Menze, Bjoern},
  author={Stühler, Elisabeth and Berthold, Michael R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41686">
    <dc:creator>Stühler, Elisabeth</dc:creator>
    <dcterms:issued>2014-12-10</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-05T08:28:56Z</dc:date>
    <dcterms:abstract xml:lang="eng">We aim at developing new dementia-related features based on longitudinal MRI in order to differentiate various stages of Alzheimer’s disease.&lt;br /&gt;&lt;br /&gt;Current methods for dementia classification rely heavily on the quality of MRI preprocessing, especially on prior registration. We propose to avoid a possibly unsuccessful and always time-consuming non-rigid registration by employing local invariant features which are independent of image scale and orientation, and can be tracked over time in longitudinal studies. We detect and track such keypoints based on scale-space theory in an automatized image processing workflow, and test it on a standardized MRI collection made available by the Alzheimer’s Disease Neuroimaging Initiative (ADNI).&lt;br /&gt;&lt;br /&gt;Our approach is very efficient for processing very large datasets collected from different sites and technical devices, and first results show that characteristic scale and movement of keypoints and their tracks differ significantly between controls and diseased subjects.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-05T08:28:56Z</dcterms:available>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Stühler, Elisabeth</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41686"/>
    <dcterms:title>Dementia-Related Features in Longitudinal MRI : Tracking Keypoints over Time</dcterms:title>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen