Publikation:

Revisiting Perceptually Optimized Color Mapping for High-Dimensional Data Analysis

Lade...
Vorschaubild

Dateien

Mittelstaedt_1-61dd2213295e45201.pdf
Mittelstaedt_1-61dd2213295e45201.pdfGröße: 1.79 MBDownloads: 211

Datum

2014

Autor:innen

Bernard, Jürgen
Steiger, Martin
Kohlhammer, Jörn

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

MARGIT POHL ..., , ed.. EuroVis 2014 : the Eurographics Conference on Visualization ; 9-13 June 2014, Swansea, Wales, UK ; EuroVis Short Papers. Eurographics Association, 2014, pp. 91-95. ISBN 978-3-905674-69-9. Available under: doi: 10.2312/eurovisshort.20141163

Zusammenfassung

Color is one of the most effective visual variables since it can be combined with other mappings and encodeinformation without using any additional space on the display. An important example where expressing additionalvisual dimensions is direly needed is the analysis of high-dimensional data. The property of perceptual linearity isdesirable in this application, because the user intuitively perceives clusters and relations among multi-dimensionaldata points. Many approaches use two-dimensional colormaps in their analysis, which are typically created byinterpolating in RGB, HSV or CIELAB color spaces. These approaches share the problem that the resulting colorsare either saturated and discriminative but not perceptual linear or vice versa. A solution that combines bothadvantages has been previously introduced by Kaski et al.; yet, this method is to date underutilized in InformationVisualization according to our literature analysis. The method maps high-dimensional data points into the CIELABcolor space by maintaining the relative perceived distances of data points and color discrimination. In this paper,we generalize and extend the method of Kaski et al. to provide perceptual uniform color mapping for visual analysisof high-dimensional data. Further, we evaluate the method and provide guidelines for different analysis tasks.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

EuroVis 2014 : the Eurographics Conference on Visualization, 9. Juni 2014 - 13. Juni 2014, Swansea, UK
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MITTELSTÄDT, Sebastian, Jürgen BERNARD, Tobias SCHRECK, Martin STEIGER, Jörn KOHLHAMMER, Daniel A. KEIM, 2014. Revisiting Perceptually Optimized Color Mapping for High-Dimensional Data Analysis. EuroVis 2014 : the Eurographics Conference on Visualization. Swansea, UK, 9. Juni 2014 - 13. Juni 2014. In: MARGIT POHL ..., , ed.. EuroVis 2014 : the Eurographics Conference on Visualization ; 9-13 June 2014, Swansea, Wales, UK ; EuroVis Short Papers. Eurographics Association, 2014, pp. 91-95. ISBN 978-3-905674-69-9. Available under: doi: 10.2312/eurovisshort.20141163
BibTex
@inproceedings{Mittelstadt2014Revis-30003,
  year={2014},
  doi={10.2312/eurovisshort.20141163},
  title={Revisiting Perceptually Optimized Color Mapping for High-Dimensional Data Analysis},
  isbn={978-3-905674-69-9},
  publisher={Eurographics Association},
  booktitle={EuroVis 2014 : the Eurographics Conference on Visualization ; 9-13 June 2014, Swansea, Wales, UK ; EuroVis Short Papers},
  pages={91--95},
  editor={Margit Pohl ...},
  author={Mittelstädt, Sebastian and Bernard, Jürgen and Schreck, Tobias and Steiger, Martin and Kohlhammer, Jörn and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30003">
    <dc:creator>Bernard, Jürgen</dc:creator>
    <dc:creator>Kohlhammer, Jörn</dc:creator>
    <dc:creator>Steiger, Martin</dc:creator>
    <dc:contributor>Steiger, Martin</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30003"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">Color is one of the most effective visual variables since it can be combined with other mappings and encodeinformation without using any additional space on the display. An important example where expressing additionalvisual dimensions is direly needed is the analysis of high-dimensional data. The property of perceptual linearity isdesirable in this application, because the user intuitively perceives clusters and relations among multi-dimensionaldata points. Many approaches use two-dimensional colormaps in their analysis, which are typically created byinterpolating in RGB, HSV or CIELAB color spaces. These approaches share the problem that the resulting colorsare either saturated and discriminative but not perceptual linear or vice versa. A solution that combines bothadvantages has been previously introduced by Kaski et al.; yet, this method is to date underutilized in InformationVisualization according to our literature analysis. The method maps high-dimensional data points into the CIELABcolor space by maintaining the relative perceived distances of data points and color discrimination. In this paper,we generalize and extend the method of Kaski et al. to provide perceptual uniform color mapping for visual analysisof high-dimensional data. Further, we evaluate the method and provide guidelines for different analysis tasks.</dcterms:abstract>
    <dc:contributor>Kohlhammer, Jörn</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-24T13:17:06Z</dcterms:available>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dcterms:issued>2014</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30003/1/Mittelstaedt_1-61dd2213295e45201.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Revisiting Perceptually Optimized Color Mapping for High-Dimensional Data Analysis</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30003/1/Mittelstaedt_1-61dd2213295e45201.pdf"/>
    <dc:contributor>Mittelstädt, Sebastian</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:contributor>Bernard, Jürgen</dc:contributor>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-24T13:17:06Z</dc:date>
    <dc:creator>Mittelstädt, Sebastian</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen