Publikation: No-reference quality assessment of H.264/AVC encoded video based on natural scene features
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
H.264/AVC coded video quality is crucial for evaluating the performance of consumer-level video camcorders and mobile phones. In this paper, a DCT-based video quality prediction model (DVQPM) is proposed to blindly predict the quality of compressed natural videos. The model is frame-based and composed of three steps. First, each decoded frame of the video sequence is decomposed into six feature maps based on the DCT coefficients. Then five efficient frame-level features (kurtosis, smoothness, sharpness, mean Jensen Shannon divergence, and blockiness) are extracted to quantify the distortion of natural scenes due to lossy compression. In the last step, each frame-level feature is averaged across all frames (temporal pooling); a trained multilayer neural network takes the five features as inputs and outputs a single number as the predicted video quality. The DVQPM model was trained and tested on the H.264 videos in the LIVE Video Database. Results show that the objective assessment of the proposed model has a strong correlation with the subjective assessment.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ZHU, Kongfeng, Vijayan ASARI, Dietmar SAUPE, 2013. No-reference quality assessment of H.264/AVC encoded video based on natural scene features. SPIE Defense, Security, and Sensing. Baltimore, Maryland, USA. In: AGAIAN, Sos S., ed. and others. Mobile Multimedia/Image Processing, Security, and Applications 2013. SPIE, 2013, pp. 875505. SPIE Proceedings. 8755. Available under: doi: 10.1117/12.2015594BibTex
@inproceedings{Zhu2013-05-28Noref-24643, year={2013}, doi={10.1117/12.2015594}, title={No-reference quality assessment of H.264/AVC encoded video based on natural scene features}, number={8755}, publisher={SPIE}, series={SPIE Proceedings}, booktitle={Mobile Multimedia/Image Processing, Security, and Applications 2013}, editor={Agaian, Sos S.}, author={Zhu, Kongfeng and Asari, Vijayan and Saupe, Dietmar} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24643"> <dc:contributor>Saupe, Dietmar</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-10-17T11:27:08Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24643/2/Zhu_246434.pdf"/> <dc:creator>Asari, Vijayan</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-10-17T11:27:08Z</dcterms:available> <dcterms:title>No-reference quality assessment of H.264/AVC encoded video based on natural scene features</dcterms:title> <dc:contributor>Asari, Vijayan</dc:contributor> <dcterms:bibliographicCitation>Mobile multimedia/image processing, security, and applications 2013 : 29-30 April 2013, Baltimore, Maryland, United States / Sos S. Agaian, Sabah A. Jassim, Eliza Yingzi Du (eds.). - Bellingham, Wash. : SPIE, 2013. - Art. 8755-4. - (Proceedings of SPIE ; 8755). - ISBN 978-0-8194-9546-4</dcterms:bibliographicCitation> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24643/2/Zhu_246434.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Saupe, Dietmar</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2013-05-28</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Zhu, Kongfeng</dc:creator> <dc:contributor>Zhu, Kongfeng</dc:contributor> <dc:rights>terms-of-use</dc:rights> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24643"/> <dcterms:abstract xml:lang="eng">H.264/AVC coded video quality is crucial for evaluating the performance of consumer-level video camcorders and mobile phones. In this paper, a DCT-based video quality prediction model (DVQPM) is proposed to blindly predict the quality of compressed natural videos. The model is frame-based and composed of three steps. First, each decoded frame of the video sequence is decomposed into six feature maps based on the DCT coefficients. Then five efficient frame-level features (kurtosis, smoothness, sharpness, mean Jensen Shannon divergence, and blockiness) are extracted to quantify the distortion of natural scenes due to lossy compression. In the last step, each frame-level feature is averaged across all frames (temporal pooling); a trained multilayer neural network takes the five features as inputs and outputs a single number as the predicted video quality. The DVQPM model was trained and tested on the H.264 videos in the LIVE Video Database. Results show that the objective assessment of the proposed model has a strong correlation with the subjective assessment.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>