Publikation:

No-reference quality assessment of H.264/AVC encoded video based on natural scene features

Lade...
Vorschaubild

Dateien

Zhu_246434.pdf
Zhu_246434.pdfGröße: 1.02 MBDownloads: 453

Datum

2013

Autor:innen

Zhu, Kongfeng
Asari, Vijayan
Saupe, Dietmar

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

AGAIAN, Sos S., ed. and others. Mobile Multimedia/Image Processing, Security, and Applications 2013. SPIE, 2013, pp. 875505. SPIE Proceedings. 8755. Available under: doi: 10.1117/12.2015594

Zusammenfassung

H.264/AVC coded video quality is crucial for evaluating the performance of consumer-level video camcorders and mobile phones. In this paper, a DCT-based video quality prediction model (DVQPM) is proposed to blindly predict the quality of compressed natural videos. The model is frame-based and composed of three steps. First, each decoded frame of the video sequence is decomposed into six feature maps based on the DCT coefficients. Then five efficient frame-level features (kurtosis, smoothness, sharpness, mean Jensen Shannon divergence, and blockiness) are extracted to quantify the distortion of natural scenes due to lossy compression. In the last step, each frame-level feature is averaged across all frames (temporal pooling); a trained multilayer neural network takes the five features as inputs and outputs a single number as the predicted video quality. The DVQPM model was trained and tested on the H.264 videos in the LIVE Video Database. Results show that the objective assessment of the proposed model has a strong correlation with the subjective assessment.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

SPIE Defense, Security, and Sensing, Baltimore, Maryland, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ZHU, Kongfeng, Vijayan ASARI, Dietmar SAUPE, 2013. No-reference quality assessment of H.264/AVC encoded video based on natural scene features. SPIE Defense, Security, and Sensing. Baltimore, Maryland, USA. In: AGAIAN, Sos S., ed. and others. Mobile Multimedia/Image Processing, Security, and Applications 2013. SPIE, 2013, pp. 875505. SPIE Proceedings. 8755. Available under: doi: 10.1117/12.2015594
BibTex
@inproceedings{Zhu2013-05-28Noref-24643,
  year={2013},
  doi={10.1117/12.2015594},
  title={No-reference quality assessment of H.264/AVC encoded video based on natural scene features},
  number={8755},
  publisher={SPIE},
  series={SPIE Proceedings},
  booktitle={Mobile Multimedia/Image Processing, Security, and Applications 2013},
  editor={Agaian, Sos S.},
  author={Zhu, Kongfeng and Asari, Vijayan and Saupe, Dietmar}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24643">
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-10-17T11:27:08Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24643/2/Zhu_246434.pdf"/>
    <dc:creator>Asari, Vijayan</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-10-17T11:27:08Z</dcterms:available>
    <dcterms:title>No-reference quality assessment of H.264/AVC encoded video based on natural scene features</dcterms:title>
    <dc:contributor>Asari, Vijayan</dc:contributor>
    <dcterms:bibliographicCitation>Mobile multimedia/image processing, security, and applications 2013 : 29-30 April 2013, Baltimore, Maryland, United States / Sos S. Agaian, Sabah A. Jassim, Eliza Yingzi Du (eds.). -  Bellingham, Wash. : SPIE, 2013. - Art. 8755-4. - (Proceedings of SPIE ; 8755). - ISBN 978-0-8194-9546-4</dcterms:bibliographicCitation>
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24643/2/Zhu_246434.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2013-05-28</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Zhu, Kongfeng</dc:creator>
    <dc:contributor>Zhu, Kongfeng</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24643"/>
    <dcterms:abstract xml:lang="eng">H.264/AVC coded video quality is crucial for evaluating the performance of consumer-level video camcorders and mobile phones. In this paper, a DCT-based video quality prediction model (DVQPM) is proposed to blindly predict the quality of compressed natural videos. The model is frame-based and composed of three steps. First, each decoded frame of the video sequence is decomposed into six feature maps based on the DCT coefficients. Then five efficient frame-level features (kurtosis, smoothness, sharpness, mean Jensen Shannon divergence, and blockiness) are extracted to quantify the distortion of natural scenes due to lossy compression. In the last step, each frame-level feature is averaged across all frames (temporal pooling); a trained multilayer neural network takes the five features as inputs and outputs a single number as the predicted video quality. The DVQPM model was trained and tested on the H.264 videos in the LIVE Video Database. Results show that the objective assessment of the proposed model has a strong correlation with the subjective assessment.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen