Publikation: Laser-Induced Magnetization Precession in Individual Magnetoelastic Domains of a Multiferroic Co40Fe40B20/BaTiO3 Composite
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Using a magneto-optical pump-probe technique with micrometer spatial resolution, we show that magnetization precession can be launched in individual magnetic domains imprinted in a Co40Fe40B20 layer by elastic coupling to ferroelectric domains in a BaTiO3 substrate. The dependence of the precession parameters on the strength and orientation of the external magnetic field reveals that laser-induced ultrafast partial quenching of the magnetoelastic coupling parameter of Co40Fe40B20 by approximately 27% along with 10% ultrafast demagnetization triggers the magnetization precession. The relation between the laser-induced reduction of the magnetoelastic coupling and the demagnetization is approximated by an n(n+1)/2 law with n≈2. This correspondence confirms the thermal origin of the laser-induced anisotropy change. Based on analysis and modeling of the excited precession, we find signatures of laser-induced precessional switching, which occurs when the magnetic field is applied along the hard magnetization axis and its value is close to the effective magnetoelastic anisotropy field. The precession-excitation process in an individual magnetoelastic domain is found to be unaffected by neighboring domains. This makes laser-induced changes of magnetoelastic anisotropy a promising tool for driving magnetization dynamics and switching in composite multiferroics with spatial selectivity.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SHELUKHIN, Leonid A., Nikolay A. PERTSEV, Alexey V. SCHERBAKOV, Daniel L. KAZENWADEL, Demid A. KIRILENKO, Sampo J. HÄMÄLÄINEN, Sebastiaan VAN DIJKEN, Alexandra M. KALASHNIKOVA, 2020. Laser-Induced Magnetization Precession in Individual Magnetoelastic Domains of a Multiferroic Co40Fe40B20/BaTiO3 Composite. In: Physical Review Applied. American Physical Society (APS). 2020, 14(3), 034061. eISSN 2331-7019. Available under: doi: 10.1103/PhysRevApplied.14.034061BibTex
@article{Shelukhin2020Laser-51461, year={2020}, doi={10.1103/PhysRevApplied.14.034061}, title={Laser-Induced Magnetization Precession in Individual Magnetoelastic Domains of a Multiferroic Co<sub>40</sub>Fe<sub>40</sub>B<sub>20</sub>/BaTiO<sub>3</sub> Composite}, number={3}, volume={14}, journal={Physical Review Applied}, author={Shelukhin, Leonid A. and Pertsev, Nikolay A. and Scherbakov, Alexey V. and Kazenwadel, Daniel L. and Kirilenko, Demid A. and Hämäläinen, Sampo J. and van Dijken, Sebastiaan and Kalashnikova, Alexandra M.}, note={Article Number: 034061} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51461"> <dc:creator>Hämäläinen, Sampo J.</dc:creator> <dc:contributor>Kazenwadel, Daniel L.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dc:creator>Pertsev, Nikolay A.</dc:creator> <dc:creator>Scherbakov, Alexey V.</dc:creator> <dc:creator>Kirilenko, Demid A.</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Kalashnikova, Alexandra M.</dc:contributor> <dc:creator>Kalashnikova, Alexandra M.</dc:creator> <dc:contributor>Pertsev, Nikolay A.</dc:contributor> <dc:creator>Kazenwadel, Daniel L.</dc:creator> <dc:contributor>Hämäläinen, Sampo J.</dc:contributor> <dc:creator>van Dijken, Sebastiaan</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-26T09:59:12Z</dc:date> <dcterms:issued>2020</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51461"/> <dc:contributor>Kirilenko, Demid A.</dc:contributor> <dc:contributor>Scherbakov, Alexey V.</dc:contributor> <dcterms:title>Laser-Induced Magnetization Precession in Individual Magnetoelastic Domains of a Multiferroic Co<sub>40</sub>Fe<sub>40</sub>B<sub>20</sub>/BaTiO<sub>3</sub> Composite</dcterms:title> <dc:contributor>van Dijken, Sebastiaan</dc:contributor> <dc:creator>Shelukhin, Leonid A.</dc:creator> <dcterms:abstract xml:lang="eng">Using a magneto-optical pump-probe technique with micrometer spatial resolution, we show that magnetization precession can be launched in individual magnetic domains imprinted in a Co<sub>40</sub>Fe<sub>40</sub>B<sub>20</sub> layer by elastic coupling to ferroelectric domains in a BaTiO<sub>3</sub> substrate. The dependence of the precession parameters on the strength and orientation of the external magnetic field reveals that laser-induced ultrafast partial quenching of the magnetoelastic coupling parameter of Co<sub>40</sub>Fe<sub>40</sub>B<sub>20</sub> by approximately 27% along with 10% ultrafast demagnetization triggers the magnetization precession. The relation between the laser-induced reduction of the magnetoelastic coupling and the demagnetization is approximated by an n(n+1)/2 law with n≈2. This correspondence confirms the thermal origin of the laser-induced anisotropy change. Based on analysis and modeling of the excited precession, we find signatures of laser-induced precessional switching, which occurs when the magnetic field is applied along the hard magnetization axis and its value is close to the effective magnetoelastic anisotropy field. The precession-excitation process in an individual magnetoelastic domain is found to be unaffected by neighboring domains. This makes laser-induced changes of magnetoelastic anisotropy a promising tool for driving magnetization dynamics and switching in composite multiferroics with spatial selectivity.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Shelukhin, Leonid A.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-26T09:59:12Z</dcterms:available> </rdf:Description> </rdf:RDF>