Publikation: Toric geometry of path signature varieties
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In stochastic analysis, a standard method to study a path is to work with its signature. This is a sequence of tensors of different order that encode information of the path in a compact form. When the path varies, such signatures parametrize an algebraic variety in the tensor space. The study of these signature varieties builds a bridge between algebraic geometry and stochastics, and allows a fruitful exchange of techniques, ideas, conjectures and solutions.
In this paper we study the signature varieties of two very different classes of paths. The class of rough paths is a natural extension of the class of piecewise smooth paths. It plays a central role in stochastics, and its signature variety is toric. The class of axis-parallel paths has a peculiar combinatoric flavor, and we prove that it is toric in many cases.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
COLMENAREJO, Laura, Francesco GALUPPI, Mateusz MICHALEK, 2020. Toric geometry of path signature varieties. In: Advances in Applied Mathematics. Elsevier. 2020, 121, 102102. ISSN 0196-8858. eISSN 1090-2074. Available under: doi: 10.1016/j.aam.2020.102102BibTex
@article{Colmenarejo2020Toric-52316, year={2020}, doi={10.1016/j.aam.2020.102102}, title={Toric geometry of path signature varieties}, volume={121}, issn={0196-8858}, journal={Advances in Applied Mathematics}, author={Colmenarejo, Laura and Galuppi, Francesco and Michalek, Mateusz}, note={Article Number: 102102} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52316"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Michalek, Mateusz</dc:contributor> <dc:creator>Colmenarejo, Laura</dc:creator> <dc:contributor>Galuppi, Francesco</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52316"/> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">In stochastic analysis, a standard method to study a path is to work with its signature. This is a sequence of tensors of different order that encode information of the path in a compact form. When the path varies, such signatures parametrize an algebraic variety in the tensor space. The study of these signature varieties builds a bridge between algebraic geometry and stochastics, and allows a fruitful exchange of techniques, ideas, conjectures and solutions.<br /><br />In this paper we study the signature varieties of two very different classes of paths. The class of rough paths is a natural extension of the class of piecewise smooth paths. It plays a central role in stochastics, and its signature variety is toric. The class of axis-parallel paths has a peculiar combinatoric flavor, and we prove that it is toric in many cases.</dcterms:abstract> <dc:creator>Michalek, Mateusz</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-08T10:11:25Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-08T10:11:25Z</dc:date> <dcterms:title>Toric geometry of path signature varieties</dcterms:title> <dcterms:issued>2020</dcterms:issued> <dc:creator>Galuppi, Francesco</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Colmenarejo, Laura</dc:contributor> </rdf:Description> </rdf:RDF>