Publikation:

Toric geometry of path signature varieties

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2020

Autor:innen

Colmenarejo, Laura
Galuppi, Francesco

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Advances in Applied Mathematics. Elsevier. 2020, 121, 102102. ISSN 0196-8858. eISSN 1090-2074. Available under: doi: 10.1016/j.aam.2020.102102

Zusammenfassung

In stochastic analysis, a standard method to study a path is to work with its signature. This is a sequence of tensors of different order that encode information of the path in a compact form. When the path varies, such signatures parametrize an algebraic variety in the tensor space. The study of these signature varieties builds a bridge between algebraic geometry and stochastics, and allows a fruitful exchange of techniques, ideas, conjectures and solutions.

In this paper we study the signature varieties of two very different classes of paths. The class of rough paths is a natural extension of the class of piecewise smooth paths. It plays a central role in stochastics, and its signature variety is toric. The class of axis-parallel paths has a peculiar combinatoric flavor, and we prove that it is toric in many cases.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690COLMENAREJO, Laura, Francesco GALUPPI, Mateusz MICHALEK, 2020. Toric geometry of path signature varieties. In: Advances in Applied Mathematics. Elsevier. 2020, 121, 102102. ISSN 0196-8858. eISSN 1090-2074. Available under: doi: 10.1016/j.aam.2020.102102
BibTex
@article{Colmenarejo2020Toric-52316,
  year={2020},
  doi={10.1016/j.aam.2020.102102},
  title={Toric geometry of path signature varieties},
  volume={121},
  issn={0196-8858},
  journal={Advances in Applied Mathematics},
  author={Colmenarejo, Laura and Galuppi, Francesco and Michalek, Mateusz},
  note={Article Number: 102102}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52316">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Michalek, Mateusz</dc:contributor>
    <dc:creator>Colmenarejo, Laura</dc:creator>
    <dc:contributor>Galuppi, Francesco</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52316"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">In stochastic analysis, a standard method to study a path is to work with its signature. This is a sequence of tensors of different order that encode information of the path in a compact form. When the path varies, such signatures parametrize an algebraic variety in the tensor space. The study of these signature varieties builds a bridge between algebraic geometry and stochastics, and allows a fruitful exchange of techniques, ideas, conjectures and solutions.&lt;br /&gt;&lt;br /&gt;In this paper we study the signature varieties of two very different classes of paths. The class of rough paths is a natural extension of the class of piecewise smooth paths. It plays a central role in stochastics, and its signature variety is toric. The class of axis-parallel paths has a peculiar combinatoric flavor, and we prove that it is toric in many cases.</dcterms:abstract>
    <dc:creator>Michalek, Mateusz</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-08T10:11:25Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-08T10:11:25Z</dc:date>
    <dcterms:title>Toric geometry of path signature varieties</dcterms:title>
    <dcterms:issued>2020</dcterms:issued>
    <dc:creator>Galuppi, Francesco</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Colmenarejo, Laura</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen