Publikation: Improving the selection of news reports for event coding using ensemble classification
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Manual coding of political events from news reports is extremely expensive and time-consuming, whereas completely automatic coding has limitations when it comes to the precision and granularity of the data collected. In this paper, we introduce an alternative strategy by establishing a semi-automatic pipeline, where an automatic classification system eliminates irrelevant source material before further coding is done by humans. Our pipeline relies on a high-performance supervised heterogeneous ensemble classifier working on extremely unbalanced training classes. Deployed to the Mass Mobilization on Autocracies database on protest, the system is able to reduce the number of source articles to be human-coded by more than half, while keeping over 90% of the relevant material.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CROICU, Mihai, Nils B. WEIDMANN, 2015. Improving the selection of news reports for event coding using ensemble classification. In: Research and Politics. 2015, 2(4). eISSN 2053-1680. Available under: doi: 10.1177/2053168015615596BibTex
@article{Croicu2015Impro-32815, year={2015}, doi={10.1177/2053168015615596}, title={Improving the selection of news reports for event coding using ensemble classification}, number={4}, volume={2}, journal={Research and Politics}, author={Croicu, Mihai and Weidmann, Nils B.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32815"> <dc:creator>Croicu, Mihai</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-02T14:58:41Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dcterms:abstract xml:lang="eng">Manual coding of political events from news reports is extremely expensive and time-consuming, whereas completely automatic coding has limitations when it comes to the precision and granularity of the data collected. In this paper, we introduce an alternative strategy by establishing a semi-automatic pipeline, where an automatic classification system eliminates irrelevant source material before further coding is done by humans. Our pipeline relies on a high-performance supervised heterogeneous ensemble classifier working on extremely unbalanced training classes. Deployed to the Mass Mobilization on Autocracies database on protest, the system is able to reduce the number of source articles to be human-coded by more than half, while keeping over 90% of the relevant material.</dcterms:abstract> <dc:creator>Weidmann, Nils B.</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32815/3/Croicu_0-309570.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dcterms:issued>2015</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32815/3/Croicu_0-309570.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Croicu, Mihai</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dcterms:title>Improving the selection of news reports for event coding using ensemble classification</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32815"/> <dc:rights>Attribution-NonCommercial 3.0 Unported</dc:rights> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-02T14:58:41Z</dcterms:available> <dc:contributor>Weidmann, Nils B.</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc/3.0/"/> </rdf:Description> </rdf:RDF>