Publikation: Deep Q-Learning for Infinite-Horizon Optimal Control Problems Governed by Parabolic PDEs
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This thesis considers discounted infinite horizon optimal control problems which are governed by parabolic partial differential equations. A finite element discretization is employed to write these optimal control problems, as linear-quadratic optimal control problems. In order to obtain an optimal control law, we are then entering the field of reinforcement-learning or more specifically Q-Learning, where we want to approximate the optimal Q-function or optimal state-control value function. Using the Hamilton-Jacobi Deep Q-Learning (HJDQN) algorithm, we can then train a neural network which will act as optimal control law. Under the utilization of Lipschitz-continuous control functions, we are then able to reduce the training process to one neural network, instead of two for most actor-critic methods like the deep deterministic policy gradient (DDPG) algorithm. For that are methods involving Deep Q-Learning and Double Q-Learning essential. We then analyse the HJDQN algorithm in numerical simulations, where our examples cover linear-quadratic optimal control problems, with linear and non-linear parabolic partial differential equations.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GOHM, Magnus, 2024. Deep Q-Learning for Infinite-Horizon Optimal Control Problems Governed by Parabolic PDEs [Masterarbeit/Diplomarbeit]. Konstanz: Universität KonstanzBibTex
@mastersthesis{Gohm2024-01-24QLear-74926,
title={Deep Q-Learning for Infinite-Horizon Optimal Control Problems Governed by Parabolic PDEs},
year={2024},
address={Konstanz},
school={Universität Konstanz},
author={Gohm, Magnus}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/74926">
<dcterms:title>Deep Q-Learning for Infinite-Horizon Optimal Control Problems Governed by Parabolic PDEs</dcterms:title>
<dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/74926/4/Gohm_2-1h7zafamlncor3.pdf"/>
<dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
<dcterms:issued>2024-01-24</dcterms:issued>
<dc:creator>Gohm, Magnus</dc:creator>
<bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/74926"/>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-10-22T09:17:41Z</dcterms:available>
<dc:language>eng</dc:language>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-10-22T09:17:41Z</dc:date>
<dcterms:abstract>This thesis considers discounted infinite horizon optimal control problems which are governed by
parabolic partial differential equations. A finite element discretization is employed to write these
optimal control problems, as linear-quadratic optimal control problems. In order to obtain an
optimal control law, we are then entering the field of reinforcement-learning or more specifically
Q-Learning, where we want to approximate the optimal Q-function or optimal state-control value
function. Using the Hamilton-Jacobi Deep Q-Learning (HJDQN) algorithm, we can then train a
neural network which will act as optimal control law. Under the utilization of Lipschitz-continuous
control functions, we are then able to reduce the training process to one neural network, instead of
two for most actor-critic methods like the deep deterministic policy gradient (DDPG) algorithm.
For that are methods involving Deep Q-Learning and Double Q-Learning essential. We then analyse
the HJDQN algorithm in numerical simulations, where our examples cover linear-quadratic optimal
control problems, with linear and non-linear parabolic partial differential equations.</dcterms:abstract>
<dc:contributor>Gohm, Magnus</dc:contributor>
<dc:rights>terms-of-use</dc:rights>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/74926/4/Gohm_2-1h7zafamlncor3.pdf"/>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
</rdf:Description>
</rdf:RDF>