Publikation: Recommending research papers to chemists : a specialized interface for chemical entity exploration
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Researchers and scientists increasingly rely on specialized information retrieval (IR) or recommendation systems (RS) to support them in their daily research tasks. Paper recommender systems are one such tool scientists use to stay on top of the ever-increasing number of academic publications in their field. Improving research paper recommender systems is an active research field. However, less research has focused on how the interfaces of research paper recommender systems can be tailored to suit the needs of different research domains. For example, in the field of biomedicine and chemistry, researchers are not only interested in textual relevance but may also want to discover or compare the contained chemical entity information found in a paper's full text. Existing recommender systems for academic literature do not support the discovery of this non-textual, but semantically valuable, chemical entity data. We present the first implementation of a specialized chemistry paper recommender system capable of visualizing the contained chemical structures, chemical formulae, and synonyms for chemical compounds within the document's full text. We review existing tools and related research in this field before describing the implementation of our ChemVis system. With the help of chemists, we are expanding the functionality of ChemVis, and will perform an evaluation of recommendation performance and usability in future work.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BREITINGER, Corinna, Kay HERKLOTZ, Tim FLEGELSKAMP, Norman MEUSCHKE, 2022. Recommending research papers to chemists : a specialized interface for chemical entity exploration. Joint Conference on Digital Libraries, JCDL '22. Cologne, Germany and Online (Hybrid), 20. Juni 2022 - 24. Juni 2022. In: AIZAWA, Akiko, ed. and others. JCDL '22 : Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2022. New York: ACM, 2022, 22. ISBN 978-1-4503-9345-4. Available under: doi: 10.1145/3529372.3533281BibTex
@inproceedings{Breitinger2022Recom-59118, year={2022}, doi={10.1145/3529372.3533281}, title={Recommending research papers to chemists : a specialized interface for chemical entity exploration}, isbn={978-1-4503-9345-4}, publisher={ACM}, address={New York}, booktitle={JCDL '22 : Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2022}, editor={Aizawa, Akiko}, author={Breitinger, Corinna and Herklotz, Kay and Flegelskamp, Tim and Meuschke, Norman}, note={Article Number: 22} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59118"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59118"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-11T09:07:13Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-11T09:07:13Z</dc:date> <dcterms:title>Recommending research papers to chemists : a specialized interface for chemical entity exploration</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dc:contributor>Herklotz, Kay</dc:contributor> <dc:creator>Flegelskamp, Tim</dc:creator> <dc:creator>Breitinger, Corinna</dc:creator> <dcterms:issued>2022</dcterms:issued> <dc:contributor>Meuschke, Norman</dc:contributor> <dc:creator>Meuschke, Norman</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Herklotz, Kay</dc:creator> <dc:contributor>Flegelskamp, Tim</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">Researchers and scientists increasingly rely on specialized information retrieval (IR) or recommendation systems (RS) to support them in their daily research tasks. Paper recommender systems are one such tool scientists use to stay on top of the ever-increasing number of academic publications in their field. Improving research paper recommender systems is an active research field. However, less research has focused on how the interfaces of research paper recommender systems can be tailored to suit the needs of different research domains. For example, in the field of biomedicine and chemistry, researchers are not only interested in textual relevance but may also want to discover or compare the contained chemical entity information found in a paper's full text. Existing recommender systems for academic literature do not support the discovery of this non-textual, but semantically valuable, chemical entity data. We present the first implementation of a specialized chemistry paper recommender system capable of visualizing the contained chemical structures, chemical formulae, and synonyms for chemical compounds within the document's full text. We review existing tools and related research in this field before describing the implementation of our ChemVis system. With the help of chemists, we are expanding the functionality of ChemVis, and will perform an evaluation of recommendation performance and usability in future work.</dcterms:abstract> <dc:contributor>Breitinger, Corinna</dc:contributor> </rdf:Description> </rdf:RDF>