Publikation:

Recommending research papers to chemists : a specialized interface for chemical entity exploration

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2022

Autor:innen

Herklotz, Kay
Flegelskamp, Tim

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

AIZAWA, Akiko, ed. and others. JCDL '22 : Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2022. New York: ACM, 2022, 22. ISBN 978-1-4503-9345-4. Available under: doi: 10.1145/3529372.3533281

Zusammenfassung

Researchers and scientists increasingly rely on specialized information retrieval (IR) or recommendation systems (RS) to support them in their daily research tasks. Paper recommender systems are one such tool scientists use to stay on top of the ever-increasing number of academic publications in their field. Improving research paper recommender systems is an active research field. However, less research has focused on how the interfaces of research paper recommender systems can be tailored to suit the needs of different research domains. For example, in the field of biomedicine and chemistry, researchers are not only interested in textual relevance but may also want to discover or compare the contained chemical entity information found in a paper's full text. Existing recommender systems for academic literature do not support the discovery of this non-textual, but semantically valuable, chemical entity data. We present the first implementation of a specialized chemistry paper recommender system capable of visualizing the contained chemical structures, chemical formulae, and synonyms for chemical compounds within the document's full text. We review existing tools and related research in this field before describing the implementation of our ChemVis system. With the help of chemists, we are expanding the functionality of ChemVis, and will perform an evaluation of recommendation performance and usability in future work.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Joint Conference on Digital Libraries, JCDL '22, 20. Juni 2022 - 24. Juni 2022, Cologne, Germany and Online (Hybrid)
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BREITINGER, Corinna, Kay HERKLOTZ, Tim FLEGELSKAMP, Norman MEUSCHKE, 2022. Recommending research papers to chemists : a specialized interface for chemical entity exploration. Joint Conference on Digital Libraries, JCDL '22. Cologne, Germany and Online (Hybrid), 20. Juni 2022 - 24. Juni 2022. In: AIZAWA, Akiko, ed. and others. JCDL '22 : Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2022. New York: ACM, 2022, 22. ISBN 978-1-4503-9345-4. Available under: doi: 10.1145/3529372.3533281
BibTex
@inproceedings{Breitinger2022Recom-59118,
  year={2022},
  doi={10.1145/3529372.3533281},
  title={Recommending research papers to chemists : a specialized interface for chemical entity exploration},
  isbn={978-1-4503-9345-4},
  publisher={ACM},
  address={New York},
  booktitle={JCDL '22 : Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2022},
  editor={Aizawa, Akiko},
  author={Breitinger, Corinna and Herklotz, Kay and Flegelskamp, Tim and Meuschke, Norman},
  note={Article Number: 22}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59118">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59118"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-11T09:07:13Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-11T09:07:13Z</dc:date>
    <dcterms:title>Recommending research papers to chemists : a specialized interface for chemical entity exploration</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Herklotz, Kay</dc:contributor>
    <dc:creator>Flegelskamp, Tim</dc:creator>
    <dc:creator>Breitinger, Corinna</dc:creator>
    <dcterms:issued>2022</dcterms:issued>
    <dc:contributor>Meuschke, Norman</dc:contributor>
    <dc:creator>Meuschke, Norman</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Herklotz, Kay</dc:creator>
    <dc:contributor>Flegelskamp, Tim</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Researchers and scientists increasingly rely on specialized information retrieval (IR) or recommendation systems (RS) to support them in their daily research tasks. Paper recommender systems are one such tool scientists use to stay on top of the ever-increasing number of academic publications in their field. Improving research paper recommender systems is an active research field. However, less research has focused on how the interfaces of research paper recommender systems can be tailored to suit the needs of different research domains. For example, in the field of biomedicine and chemistry, researchers are not only interested in textual relevance but may also want to discover or compare the contained chemical entity information found in a paper's full text. Existing recommender systems for academic literature do not support the discovery of this non-textual, but semantically valuable, chemical entity data. We present the first implementation of a specialized chemistry paper recommender system capable of visualizing the contained chemical structures, chemical formulae, and synonyms for chemical compounds within the document's full text. We review existing tools and related research in this field before describing the implementation of our ChemVis system. With the help of chemists, we are expanding the functionality of ChemVis, and will perform an evaluation of recommendation performance and usability in future work.</dcterms:abstract>
    <dc:contributor>Breitinger, Corinna</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen