Publikation: An effective hydrodynamic description of marching locusts
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
A fundamental question in complex systems is how to relate interactions between individual components ('microscopic description') to the global properties of the system ('macroscopic description'). Furthermore, it is unclear whether such a macroscopic description exists and if such a description can capture large-scale properties. Here, we address the validity of a macroscopic description of a complex biological system using the collective motion of desert locusts as a canonical example. One of the world's most devastating insect plagues begins when flightless juvenile locusts form 'marching bands'. These bands display remarkable coordinated motion, moving through semiarid habitats in search of food. We investigated how well macroscopic physical models can describe the flow of locusts within a band. For this, we filmed locusts within marching bands during an outbreak in Kenya and automatically tracked all individuals passing through the camera frame. We first analyzed the spatial topology of nearest neighbors and found individuals to be isotropically distributed. Despite this apparent randomness, a local order was observed in regions of high density in the radial distribution function, akin to an ordered fluid. Furthermore, reconstructing individual locust trajectories revealed a highly aligned movement, consistent with the one-dimensional version of the Toner-Tu equations, a generalization of the Navier–Stokes equations for fluids, used to describe the equivalent macroscopic fluid properties of active particles. Using this effective Toner–Tu equation, which relates the gradient of the pressure to the acceleration, we show that the effective 'pressure' of locusts increases as a linear function of density in segments with the highest polarization (for which the one-dimensional approximation is most appropriate). Our study thus demonstrates an effective hydrodynamic description of flow dynamics in plague locust swarms.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GORBONOS, Dan, Felix B. OBERHAUSER, Luke COSTELLO, Yannick GÜNZEL, Einat COUZIN-FUCHS, Benjamin KOGER, Iain D. COUZIN, 2024. An effective hydrodynamic description of marching locusts. In: Physical Biology. IOP Publishing. 2024, 21(2), 026004. ISSN 1478-3967. eISSN 1478-3975. Available under: doi: 10.1088/1478-3975/ad2219BibTex
@article{Gorbonos2024effec-69432, year={2024}, doi={10.1088/1478-3975/ad2219}, title={An effective hydrodynamic description of marching locusts}, number={2}, volume={21}, issn={1478-3967}, journal={Physical Biology}, author={Gorbonos, Dan and Oberhauser, Felix B. and Costello, Luke and Günzel, Yannick and Couzin-Fuchs, Einat and Koger, Benjamin and Couzin, Iain D.}, note={Article Number: 026004} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69432"> <dc:creator>Costello, Luke</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69432/1/Gorbonos_2-1guc5cnapnhs24.pdf"/> <dc:creator>Günzel, Yannick</dc:creator> <dc:creator>Oberhauser, Felix B.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Koger, Benjamin</dc:contributor> <dc:contributor>Couzin, Iain D.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Couzin-Fuchs, Einat</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-02-29T09:41:04Z</dcterms:available> <dc:creator>Koger, Benjamin</dc:creator> <dc:contributor>Costello, Luke</dc:contributor> <dc:contributor>Couzin-Fuchs, Einat</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:abstract>A fundamental question in complex systems is how to relate interactions between individual components ('microscopic description') to the global properties of the system ('macroscopic description'). Furthermore, it is unclear whether such a macroscopic description exists and if such a description can capture large-scale properties. Here, we address the validity of a macroscopic description of a complex biological system using the collective motion of desert locusts as a canonical example. One of the world's most devastating insect plagues begins when flightless juvenile locusts form 'marching bands'. These bands display remarkable coordinated motion, moving through semiarid habitats in search of food. We investigated how well macroscopic physical models can describe the flow of locusts within a band. For this, we filmed locusts within marching bands during an outbreak in Kenya and automatically tracked all individuals passing through the camera frame. We first analyzed the spatial topology of nearest neighbors and found individuals to be isotropically distributed. Despite this apparent randomness, a local order was observed in regions of high density in the radial distribution function, akin to an ordered fluid. Furthermore, reconstructing individual locust trajectories revealed a highly aligned movement, consistent with the one-dimensional version of the Toner-Tu equations, a generalization of the Navier–Stokes equations for fluids, used to describe the equivalent macroscopic fluid properties of active particles. Using this effective Toner–Tu equation, which relates the gradient of the pressure to the acceleration, we show that the effective 'pressure' of locusts increases as a linear function of density in segments with the highest polarization (for which the one-dimensional approximation is most appropriate). Our study thus demonstrates an effective hydrodynamic description of flow dynamics in plague locust swarms.</dcterms:abstract> <dcterms:issued>2024</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69432"/> <dc:creator>Couzin, Iain D.</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69432/1/Gorbonos_2-1guc5cnapnhs24.pdf"/> <dc:language>eng</dc:language> <dc:contributor>Oberhauser, Felix B.</dc:contributor> <dc:contributor>Gorbonos, Dan</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-02-29T09:41:04Z</dc:date> <dcterms:title>An effective hydrodynamic description of marching locusts</dcterms:title> <dc:contributor>Günzel, Yannick</dc:contributor> <dc:creator>Gorbonos, Dan</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/> </rdf:Description> </rdf:RDF>